Twisted mass ensemble generation on GPU machines

Bartosz Kostrzewa

M. Garofalo, S. Romiti
S. Bacchio, J. Finkenrath, F. Pittler

High Performance Computing & Analytics Lab,
Rheinische Friedrich-Wilhelms-Universitdt Bonn

August 8th 2022, 39th International Symposium on Lattice Field Theory, Bonn

©

HPC/A-LAB

2,

>
k)

UNIVERSITAT
By

C .
aborat®”

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

The cost of ensemble generation (at phys. M, on CPU machines)

M, ~ 135 MeV

6.0 -

BT /N /N
sim. status = 5'9'
O done - 4.5
A ongoing 4.0 EKD Q B
O planned 3.5 @

3.0 A
a [fm] o5 A
® 0.091 : T T T T T
® 0.08 Y 9 R > >
® 0.068 D @ &
® 0.057 Q7 Q
® 0.049 (Z2 [fm2]

L/a.18.64‘80.96. 112

core-hours per traj.

lob -

integrator
® 2MN -
A 2MNFG p

10% 1

103 4

----- 2"dorder + MG

— 4P order + MG

T T T
48 64 80 96 112 128 144
L/a

r

@ need several further ensembles at larger M, - L

» both at the finest and the coarsest lattice spacings

@ Absolutely need GPU implementations of everything

~——
B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

@ State-of-the-art integrator & solvers — cost scales like (L/a)®/? at (roughly) constant acceptance

* more statistics needed due to autocorrelations (critical slowing down and pion mass splitting)

@ cost O(107) core-hours & real time per trajectory > 6 hours at this stage

August 8th, LAT'22, Bonn

2/15

The tmLQCD software suite
[10.1016/j.cpc.2009.05.016, 10.22323/1.187.0416, 10.22323/1.187.0414, gh.com/etmc/tmLQCD]

@ current HMC production code of the Extended Twisted Mass -
Collaboration (ETMC) [https://github.com /etmc/tmLQCD]

@ ~ 150k lines (C), MPI 4+ OpenMP, macro-based hardware _
specialization (intrinsics or inline assembly for SSE4, Contributors 15
BlueGene[L,P,Q])

L L2 £
%b ; ol
@ mainly 2 to 3 people over ~ 20 years ‘ @ E
» major contributions by another 3 to 4 ‘9 e a

» small contributions by another 10 or so

@ since around 2015, rely on (and extend) libraries + 4 contributors

» QPhiX for AVX2, AVX512 (Bilint Jod et al.)
[10.1007/978-3-319-46079-6_30, gh.com/JeffersonLab/qphix]

» DD-aAMG for MG solver on CPU Languages
[10.1137/130919507, 10.48550/arXiv.1307.6101,
10.1103/PhysRevD.94.114509, gh.com/sbacchio/DDalphaAMG] N W 11
> QUDA for GPU operators and solvers (Kate Clark et al.) ® C766% @ Cudai54%
[10.1016/j.cpc.2010.05.002, 10.1145/2063384.2063478, ® C++36% Lex 2.1%

10'1109/SC'2016'67] Makefile 0.8% ® Assembly 0.7%

@ long history of debates about future code for GPU machines Other 0.8%

without results (essentially lack of people power...)
B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA August 8th, LAT'22, Bonn 3/15

https://doi.org/10.1016/j.cpc.2009.05.016
https://doi.org/10.22323/1.187.0416
https://doi.org/10.22323/1.187.0414
https://www.github.com/etmc/tmLQCD
https://doi.org/10.1007/978-3-319-46079-6_30
https://github.com/JeffersonLab/qphix
https://doi.org/10.1137/130919507
https://doi.org/10.48550/arXiv.1307.6101
https://doi.org/10.1103/PhysRevD.94.114509
https://github.com/sbacchio/DDalphaAMG
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1145/2063384.2063478
http://dx.doi.org/10.1109/SC.2016.67
https://github.com/etmc/tmLQCD

Saved by the QUDA library
@ First use with tmLQCD around 2015 (for observables)

@ Work on interface for HMC started in 2018, first running version [

https://github.com/lattice/quda

in 2021 (motivated by QUDA performance-portability efforts)

BeginExternalInverter QUDA # equivalents of QUDA tests
MGCoarseMuFactor = 1.0, 1.0, 60.0 # command line parameters
MGNumberQOfLevels = 3
MGNumberQfVectors = 24, 32
MGSetupSolver = cg
[...]

EndExternalInverter

BeginMonomial CLOVERDETRATIO
Timescale = 3
kappa = 0.1394267
2KappaMu = 0.000200774448

rho = 0.0

rho2 = 0.0018

CSW = 1.69
AcceptancePrecision = 1.e-21
ForcePrecision = 1.e-18

Name = cloverdetratio3light

MaxSolverIterations = 500

solver = mg

useexternalinverter = quda

usesloppyprecision = single
EndMonomial

enable QUDA pathway in solver
driver for this monomial

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

Contributors 33

+ 22 contributors

! i %

Environments 1

& github-pages

Languages

L]

® C++68.2% ® Cuda 24.9%

® C36% ® CMake 2.0%

® Python 0.8%
Other 0.2%

Shell 0.3%

August 8th, LAT'22, Bonn

4/15

https://github.com/lattice/quda

Hybrid CPU/GPU HMC

@ gauge field and conjugate
momenta in host memory

@ solvers and gauge term
derivative on device

@ need to keep track of gauge
field state

» solution: tag host and device
objects

» using checksum too restrictive

» — simply use trajectory time
(real number)

» when host and device tags

disagree, update device copy
(optional: use thresholds)

> nice side-effect: natural
mechanism to track MG setup

@ incremental port: need good
mechanisms to identify
hotspots and their causes

gauge field

\

U()T>U1—>U2—>U3""
\

\

\

/AR VAR
x

/N

P0—>P1%P2%P3""

conjugate
momenta

simulation time

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

-

August 8th, LAT'22, Bonn

5/15

tmLQCD's profiler

tm_stopwatch_push (&g_t imers, __func

[...]
tm_stopwatch_pop(&g_timers, 0, 0, "TM_QUDA");

_—— "");

@ introduced stack-based profiler into
tmLQCD (and accompanying
analysis scripts)

» output simply to stdout with
levelO/levell/level3/. .. tags

» analysis parses log file (176 lines of R)
and renders Rmarkdown report

» Tables and plots with context and
identification of call tree depth

» Visualize also QUDA's finalisation
profile (see backup slides)

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

tmLQCD's profiler

@ combine view on physical and
computational hotspots

e focus on splitting of the MD
Hamiltonian at this global level =

5000

reorder(monomial, prop)
GAUGE

ndcloverratcor

other and unaccounted for
cloverdetratiollight
cloverdetlight
ndcloverrat2

ndcloverrat3
cloverdetratio3light
ndcloverratl

cloverdetratio2light

(profile from 643 - 128 physical point simulation on 16 Marconi 100 nodes)

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

GPU-dominated parts
cloverdetratio2light derivative

derivative:2 derivative:3 derivative:4
4000 A 4000 A
4000 -
3000 3000
3000
[J)
e 2000 1 invert_eo_degenerate_quda 100.0 % 20004
= 2000
1000+ 1000 4 10004
0 04 other 0.0 % 04

call tree level

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

CPU-dominated parts
ndcloverratl derivative

derivative:2 derivative:3 derivative:4
4000 4
800 4
deriv_Sb 20.1 %
750 A
3000 A
600 -
500 A
)
£ 2000 400
250 A
1000 - 200 4
0- Sl of TEESEEEET— | .

call tree level

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

MG solver in the light sector

| | .
- i | | In practice we employ
2 100+ : : Solver | | @ 2 to 3 p-shifts (shifting the EO-operator)
%O] : : ca : @ 3-4 time scales
'g 1 : : + MG : — per trajectory need to solve systems with:
= 103 .
= 1 | | e p =0 about O(100) times
O 4
% 1_" m: @ p = 0.001 about O(100) times
> § | | |
g] :mu,d :ms :mc e p~ 0.01 about O(200) times
0.001 0.010 0.100 e p~ 0.1 about O(400) times
ap MG requires two solves in derivative and an update of
Comparison between MG-preconditioned-GCR and the coarse operator (due to twisted mass sign change),
mixed-precision CG (GPU) but easily wins up to p &~ am.
MG timing: two inversions + unavoidable overheads from We employ both MG and CG to minimize total cost.
coarse operator updates between D and DT inversions

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA August 8th, LAT'22, Bonn 10/15

Multi-shift solver for the 1 + 1 sector

Rational Approximation Correction Term
precision / refinement 3]
920 - o double @ 64° - 128 lattice
= single / single e CPU: 3072 cores Intel Platinum 8168 (64 Juwels nodes)
— | AkA ‘A single / half e GPU: 32 A100 (8 Juwels Booster nodes)
3154 1/
g . Machine / Algorithm HB ACC
=
o 107 (CPU) QPhiX multi-shift CG 810s 550
3 (CPU) DD-aAMG accelerated multi-shift CG 590 s 400 s
- (GPU) QUDA mshift CG (double) 1455 93s
5 (GPU) QUDA mshift CG (single / single) 127s 79s
(GPU) QUDA mshift CG (single / half) 103s 66s
0 @ Similar real time improvements in the derivative terms
10 20 30 @ mixed-precision refinement really helps with the expensive
call # solves (factor ~ 1.5)

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA August 8th, LAT'22, Bonn 11/15

Current state of the port

machine real time node-hours (CPU) / kWh
GPU-hours

@ 3072 cores Intel Xeon Platinum 8168 (64 nodes) 64 nodes 2.61 h 167 ~ 84
A 32 NVIDIA A100 + 384 cores AMD EPYC Rome 7402 (8 nodes) (_J uwels)
w10t 32 GPUs 1.58 h 50.6 ~ 24
o (Juwels Booster)
a 103 -
% @ CPU strong scaling to 64 nodes okay, not great beyond
< 1074 that — real throughput limitation
=
O 10, - @ gets (much) worse for larger volumes where many more
> r —— [4"order + MG (CPU))) :
& nodes are required (depends on machine though)
Zo 100 - --—— {4“’01‘(]61‘ + MG (GPU)]

48 64 80 96 112 198 144 @ Improvement factor CPU/GPU in energy usage already

L/a ~ 3.5

(real trajectories at M, ~ 135 MeV on 643 - 128 lattice)
@ Expect another factor of 2 to 2.5

o Finally we will be able to run a trajectory in less than one
hour again!

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA August 8th, LAT'22, Bonn 12/15

Current state of the port
HMC Strong scaling

64° - 128 @ M, ~ 135 MeV 1123 .224 @ M, ~ 135 MeV
84 . s 4 - P 7
d ”
/.' ideal . - < /.' ideal . - -
| ® Juwels Booster P ® Juwels Booster P ®
.0 - S 3- e
? -7 [? L7
3 gl I .
a 44 PRg a e <
»n -7 n27 -
2 @ e i -, - =
-, ‘< -
ns 140"
T T T T T T T T T
4 8 16 32 28 49 56 98 112
Nodes Nodes

@ see excellent whole-program scalability on Juwels Booster and very good absolute per trajectory times
@ Scalability will get worse as we move the CPU-dominated parts fully to GPU

» more of the scaling behaviour will depend on the MG, which does not scale well by definition

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

August 8th, LAT'22, Bonn 13/15

What about performance-portability?

Single-node comparison on a 323 x 64 lattice on
o Juwels Booster (4x A100)
e Jureca DC-MI200 (4x AMD MI-250, ROCm 5.2.0, still being fine-tuned!).

1.0

time per trajectory [h]

0.4+

(full HMC run, thermalised configuration, comparable

o
o]
]

o
o
1

GPU type
-© A100
9 MI250

(M /ME™*)2 | time A100 [h] time MI250 [h] ratio

3.75 0.411 0.546 1.33
2.25 0.478 0.762 1.59
1.50 0.487 0.798 1.64
1.00 0.542 0.975 1.80

e Time investment (for us)®:

» 2-3 hours to adjust tmLQCD build system & compile code
» few hours with JSC admins and AMD experts to resolve a
few ROCm issues

I get an HMC which runs on MI-250 and is at most a factor

! 2
(M /MEM®)?

acceptance rate)

B. Kostrzewa (HPC/A-Lab, Bonn U.)

of 2 slower even at the physical point (at least on a single
node) — excellent!

“major thanks to Balint Joé and QUDA devs for many hundreds
of hours of effort which make this possible!

tmLQCD + QUDA August 8th, LAT'22, Bonn 14 /15

Conclusions and Outlook

o thanks to QUDA devs, we were able to improve our energy efficiency by factor of & 3 already, another factor

of & 2 remaining

o will allow us to complete ensemble set on current & upcoming machines

@ probably the end of the line for tmLQCD
» Cis too limiting, data layouts too inflexible

@ time to join forces with others and / or redesign our toolset completely
» excellent performance of QUDA-MG means that it will play a role no matter what

@ prepare for modular exascale machines

Thanks for your attention!

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

August 8th, LAT'22, Bonn

15/15

Backup

Backup Slides

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

QUDA's finalisation profile (backup)

0
@ Same analysis script also visualises
QUDA's finalisation profile
@ in general spend 70 to 80 % of reorder(name, prop)
QUDA time in compute (5.9%) [\ Yo.6%] a epilogue
a free
@ host-device memory traffic is a tiny a upload
overhead (for now) 18.7% a comms
. . a | download
@ our poor decisions: too much time 2 init
spent in memory allocations and 10000 70.9% Bl preamble
frequent reinitialisations (init and WA al| compute
preamble)
@ — some potential for future
improvement here

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA August 8th, LAT'22, Bonn 17 /15

