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Motivation

• Investigate compressibility of nuclear
matter, and existence of critical point

• Sign-problem

• Difficult HMC calculations for large 
chemical potential

• Reweighting (Determinant costs 𝑂(𝑁𝑠
9))

• Taylor expansion (Limited convergence
radius) 
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Complex Langevin

• Complex action => Sign problem

• Using stochastic equation
instead of importance sampling.

• With the correct configuration space

• ℜ 𝑑𝜙 = ℜ 𝐾 𝑑𝑡 + 𝑑𝜔, ℑ 𝑑𝜙 = ℑ 𝐾 𝑑𝑡

𝐾 = −
𝑑

𝑑𝜙
𝑆 𝜙

𝐿𝑐 = 𝜕𝑧 + 𝐾𝑧 𝜕𝑧

𝜕𝑡𝑃 𝜙, 𝑡 = 𝐿𝑐𝑃 𝜙, 𝑡

𝜌 𝜙 ∝ exp −𝑆 𝜙
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Boundary terms

• Interpolation function between 𝑃 𝑡 and 𝜌 𝑡

• 𝐹𝑂 𝑡, 𝜏 = ∫ 𝑃 𝑥, 𝑦, 𝑡 − 𝜏 exp 𝜏𝐿𝑐 𝑂 𝑥 + 𝑖𝑦 𝑑𝑥𝑑𝑦

𝐹𝑂 𝑡, 0 = ⟨𝑂⟩𝑃 𝑡 , 𝐹𝑂 𝑡, 𝑡 = ⟨𝑂⟩𝜌 𝑡

• If 𝐹𝑂 𝑡, 𝜏 is constant in tau, then the 
observables are correct
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𝑆 = 𝑖𝛽cos(𝜙)



Cut-off effect

• Big error at run-aways

• Limit the imaginary part, to “cut-off” run-aways

𝐵𝑛 𝑌, 𝑡 = 𝜕𝜏
𝑛𝐹𝑂 𝑡, 𝜏 ȁ𝜏=0

= −∫
𝑦 <𝑌

𝜕𝑡
𝑛𝑃 𝑥, 𝑦, 𝑡 𝑂(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦 + ∫

ȁ𝑦ȁ<𝑌
𝑃 𝑥, 𝑦, 𝑡 𝐿𝑐

𝑛𝑂(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦

• First integral vanishes as 𝑡 → ∞

• Second is easy to calculate on the lattice

• Higher order boundary terms

𝐵𝑛 𝑌, 𝑡 = න
ȁ𝑦ȁ<𝑌

𝑃 𝑥, 𝑦, 𝑡 𝐿𝑐
𝑛 𝑂(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦
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Toy model

• Action:

𝑆 𝜙 = 𝑖𝛽 cos 𝜙 +
1

2
𝑠𝜙2

• Observable:
𝑂 𝜙 = exp(𝑖𝜙)

• Bounary term:
𝐿𝑐𝑂 𝜙 = 𝑖 𝑖 − 𝑆′ 𝜙 exp 𝑖𝜙
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Updating 
the lattice 
using CLE

• Update:

𝑈𝜇
𝑛+1 𝑥 = exp 𝑖𝜆𝑎 𝜖𝐾𝜇𝑎 𝑥 + 𝜖 𝜂𝜇𝑎 𝑥 𝑈𝜇

𝑛 𝑥

• Using the left derivative
𝐾𝜇𝑎 𝑥 = −𝐷𝜇𝑎𝑆 𝑥 ,

𝐷𝜇𝑎𝑓 𝑈 = 𝜕𝛼𝑓 exp 𝑖𝛼𝜆𝑎 𝑈𝜇 𝑥 ቚ
𝛼=0

• If the drift is complex ⇒ 𝑈 ∈ 𝑆𝐿 𝑁

• Needs gauge cooling after each step

8



Reweighting 

• Change the weights

𝑥 𝑤 =
∑𝑤𝑖𝑥𝑖
∑𝑤𝑗

=

∑𝑤𝑖𝑥𝑖
𝑤𝑖
′

𝑤𝑖
′

∑𝑤𝑗
𝑤𝑗
′

𝑤𝑗
′

=

∑𝑤𝑖
′𝑥𝑖

𝑤𝑖

𝑤𝑖
′

∑𝑤𝑗
′ 𝑤𝑗
𝑤𝑗
′

=

𝑥
𝑤
𝑤′

𝑤′

𝑤
𝑤′

𝑤′

• Used in HMC, to simulate non-zero chemical 
potential
𝑤

𝑤′
=

det𝑀 𝜇

det𝑀 𝜇 = 0
= exp −

𝑉

𝑇
Δ𝐹 𝜇, 𝑡

• Large 𝜇 ⇒
𝑤

𝑤′ goes towards zero 
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Results – Plaquettes 
[Hansen, Sexty in preparation] 
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Results – Polyakov loops 
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Dynamical 
stabilization
(Attanasio, Jäger, arxiv: 1808.04400)

• Introducing a Gauge invariant force, to 
the drift

• Designed to grow rapidly with the 
unitarity norm
𝐾𝜇𝑎 𝑥 → 𝐾𝜇𝑎 𝑥 + 𝑖𝛼𝐷𝑆𝑀𝑎 𝑥

𝑀𝑎 𝑥 = 𝑖𝑏𝑎 ෍

𝑐

𝑏𝑐 𝑥 𝑏𝑐 𝑥

3

𝑏𝑎 𝑥 = 𝑇𝑟 𝜆𝑎෍

𝜇

𝑈𝜇 𝑥 𝑈𝜇
† 𝑥

3
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https://arxiv.org/abs/1808.04400


DynStab – Low temperature
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[Hansen, Sexty in preparation] 



DynStab – High Temperature
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DynStab – Boundary terms low temp
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DynStab – Boundary terms high temp
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Conclusion
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CL works very well for non-zero 
density (high temperature) 

Low temperature deviations can be 
estimated using boundary terms

Dynamical Stabilization can slow 
the drifts from SU(3) to SL(3)

Dynamical Stabilization can help 
simulate low temperature



Calculating the boundary

• Long and difficult calculations

• Σ =
1

Ω
𝑇𝑟 𝑀−1

• 𝐿𝑐Σ =
2

Ω

𝑁2−1

𝑁
𝑇𝑟 𝑀−1 −𝑚𝑇𝑟 𝑀−2

+
1

ȁΩȁ
෍

𝑗∈Ω

2𝑇𝑟 𝑀−1 𝐷𝑎
𝑗
𝑀 𝑀−1 𝐷𝑎

𝑗
𝑀 𝑀−1

+
1

Ω
෍

𝑗∈Ω

𝐾𝑎
𝑗
𝐷𝑎
𝑗
𝑇𝑟 𝑀−1
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