Towards Quantum Monte Carlo Simulations at non-zero Baryon and Isospin Density in the Strong Coupling Regime

Wolfgang Unger, Pratitee Pattanaik, Bielefeld University
Lattice 2022, Bonn
08.08.2022

Outline

Context:

- ▶ Quantum Hamiltonian LQCD: has been established for $N_{\rm f}=1$ and in the strong coupling limit only
- ▶ allows to apply Quantum Monte Carlo algorithms for finite μ_B [Klegrewe, U. PRD 102 (2020)]

Aim:

 $N_{\rm f}=2$: Determine the phase diagram for both finite baryon and isospin chemical potential

Content of the talk:

- 1 The Hamiltonian approach to Lattice QCD
- f 2 Expectations from Meanfield Theory and HMC for $N_{
 m f}=2$
- $oxed{3}$ Setup of the $N_{
 m f}=2$ Quantum Monte Carlo Simulation
- f 4 Preliminary results at finite μ_B , μ_I

Lattice QCD in a Dual Formulation

- **Dual representation**: color singlets from integrating out gauge fields $U_{\mu}(x)$
 - unrooted staggered fermions, standard Wilson gauge action
 - at $\beta=0$: link states are mesons and baryons [Rossi, Wolff, NPB 248 (1984)]
 - $\begin{tabular}{ll} \blacksquare & at $\beta>0$: color singlets may include gluon contributions [Gagliardi, U, PRD 101 (2020)] \end{tabular}$

2-dim. example of configuration in terms of dual variables

Lattice QCD in a Dual Formulation

- ▶ Dual representation: color singlets from integrating out gauge fields $U_{\mu}(x)$
 - unrooted staggered fermions, standard Wilson gauge action
 - at $\beta = 0$: link states are mesons and baryons [Rossi, Wolff, NPB 248 (1984)]
 - at $\beta > 0$: color singlets may include gluon contributions [Gagliardi, U, PRD 101 (2020)]
- ▶ Sign problem in regime $\beta = \frac{6}{g^2} \lesssim 1$ mild enough to study full phase diagram:
 - lacksquare baryons are heavy: $\Delta f \simeq 10^{-5}$
 - in continuous time limit $N_t \to \infty$: baryons become static
 - \Rightarrow finite density sign problem absent!

Quantum Hamiltonian is derived from dual representation via continuous time limit!

2-dim. example of configuration in terms of dual variables

average sign vanishes for $N_t o \infty$ $(a_t o 0)$

Euclidean Continuous Time Limit

Introduce bare anisotropy γ in Dirac couplings such that $\xi = \frac{a_s}{a_t} \neq 1$:

$$Z_F(m_q, \mu, \gamma) = \sum_{\{k, n, \ell\}} \prod_{b = (x, \mu)} \frac{(N_c - k_b)!}{N_c! k_b!} \gamma^{2k_b \delta_{\mu 0}} \prod_x \frac{N_c!}{n_x!} (2am_q)^{n_x} \prod_{\ell} w(\ell, \mu)$$

Non-perturbative result: $\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1+\lambda\gamma^4}$, $\kappa = 0.781(1)$ [de Forcrand, Vairinhos, U., PRD 97 (2018)]

Euclidean Continuous Time Limit

Introduce bare anisotropy γ in Dirac couplings such that $\xi = \frac{a_s}{a_t} \neq 1$:

$$Z_F(m_q, \mu, \gamma) = \sum_{\{k, n, \ell\}} \prod_{b = (x, \mu)} \frac{(N_c - k_b)!}{N_c! k_b!} \gamma^{2k_b \delta_{\mu 0}} \prod_x \frac{N_c!}{n_x!} (2am_q)^{n_x} \prod_{\ell} w(\ell, \mu)$$

 $\begin{array}{c} \blacktriangleright \ \ \ \ \, \text{Non-perturbative result:} \ \ \xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1+\lambda \gamma^4}, \quad \kappa = 0.781(1) \\ \qquad \qquad \qquad \quad \, [\text{de Forcrand, Vairinhos, U., PRD 97 (2018)}] \end{array}$

Define the continuous Euclidean time limit (CT-limit):

$$N_t o \infty, \quad \xi, \gamma o \infty, \quad aT = rac{\xi(\gamma)}{N_t} \simeq \kappa \mathcal{T}(\gamma, Nt), \quad \mathcal{T} = rac{\gamma^2}{N_t} \quad \text{fixed}$$

ightharpoonup only one parameter \mathcal{T} setting the temperature

Euclidean Continuous Time Limit

Introduce bare anisotropy γ in Dirac couplings such that $\xi = \frac{a_s}{a_t} \neq 1$:

$$Z_F(m_q, \mu, \gamma) = \sum_{\{k, n, \ell\}} \prod_{b = (x, \mu)} \frac{(N_c - k_b)!}{N_c! k_b!} \gamma^{2k_b \delta_{\mu 0}} \prod_x \frac{N_c!}{n_x!} (2am_q)^{n_x} \prod_{\ell} w(\ell, \mu)$$

Non-perturbative result: $\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1+\lambda\gamma^4}, \quad \kappa = 0.781(1)$ [de Forcrand, Vairinhos, U., PRD 97 (2018)]

Define the continuous Euclidean time limit (CT-limit):

$$N_t o \infty, \quad \xi, \gamma o \infty, \quad aT = rac{\xi(\gamma)}{N_t} \simeq \kappa \mathcal{T}(\gamma, Nt), \quad \mathcal{T} = rac{\gamma^2}{N_t} \quad ext{fixed}$$

ightharpoonup only one parameter $\mathcal T$ setting the temperature

Main advantages of CT-limit:

- lacktriangle no need to perform the continuum extrapolation $a_t o 0$ $(N_t o \infty)$
- determine phase boundary unambiguously and more precisely, with a faster algorithm (QMC)

From Dimers to Meson Occupation Numbers $(N_{\rm f}=1)$

Correspondence between discrete and continuous time:

- alternating dimer chains (top) and meson occupation numbers m (bottom):
- multiple spatial dimers become resolved in single spatial dimers, oriented consistently due to even-odd ordering

conservation law: for mesons connecting $\langle x, y \rangle$

$$\mathfrak{m}_x \mapsto \mathfrak{m}_x \pm 1 \quad \Leftrightarrow \quad \mathfrak{m}_y \mapsto \mathfrak{m}_y \mp 1$$

Hamiltonian Formulation: Creation and Annihilation Operators

Derive Hamiltonian via diagrammatic expansion of $Z_{CT} = \lim_{\gamma,N_t \to \infty} Z_{N_t}(\gamma)$

lacktriangle express the partition function as series in inverse temperature $\frac{1}{\mathcal{T}} = \frac{N_t}{\gamma^2}$:

$$Z_{\mathrm{CT}}(\mathcal{T},\mu_{\mathcal{B}}) = \mathrm{Tr}_{\mathfrak{h}}\left[e^{(\hat{\mathcal{H}}+\hat{\mathcal{N}}\mu_{\mathcal{B}})/\mathcal{T}}\right], \ \hat{\mathcal{H}} = \frac{1}{2}\sum_{\langle\vec{x},\vec{y}\rangle}\left(\hat{J}_{\vec{x}}^{+}\hat{J}_{\vec{x}}^{-} + \hat{J}_{\vec{x}}^{-}\hat{J}_{\vec{x}}^{+}\right), \ \hat{\mathcal{N}} = \sum_{\vec{x}}\hat{\omega}_{x}$$

▶ the creation \hat{J}^+ and annihilation operators $\hat{J}^- = (\hat{J}^+)^T$ contain the matrix elements $\left\langle \mathfrak{m}_1 | 1 | \mathfrak{m}_2 \right\rangle$ with $\hat{v}_{\perp} = \left\langle 0 | 1 | 2 \right\rangle = 1$, $\hat{v}_{\mathbf{T}} = \left\langle 1 | 1 | 1 \right\rangle = \frac{\sqrt{3}}{4}$:

- ▶ local Hilbert space per site: $|\mathfrak{h}\rangle \in \mathbb{H}_{\mathfrak{h}} = [0, \pi, 2\pi, 3\pi; B^+, B^-]$
- block-diagonal structure due to commutation relation $[\hat{\mathcal{H}},\hat{\mathcal{N}}]=0$

Phase Diagrams from $N_{ m f}=1$ Hamiltonian LQCD

From Quantum Monte Carlo / Density of States Method:

b obtain baryonic observables and phase diagrams to high precision

Grand-canonical phase diagram

Canonical phase diagram

[Klegrewe, U. PRD 102 (2020)]

Expectations from Mean Field Theory at Strong Coupling (Nf=2)

- ightharpoonup mean field results for staggered fermions in 1/d expansion
- \blacktriangleright at non-zero isospin density: two CEP (first σ_u vanishes, then σ_d)
- pion condensation vanishes again at larger isospin density (Pauli saturation)

[Nishida, PRD **69 (2004)**]

Expectations from Mean Field for 3-dim Effective Theory (Nf=2)

 mean field based on Polyakov loop effective theory (Wilson fermions via hopping parameter expansion)

[from Master thesis of Amine Chabane (2022)]

► see next talk by **Amine Chabane** "Towards the phase diagram of cold and dense heavy QCD", Mon. 5:30 and talk by **Christoph Konrad** "Mean-field approximation of effective theories of lattice QCD", Fri. 6pm

Expectations from HMC (Nf=2+1)

QCD phase diagram at non-zero isospin chemical potential:

[Brandt et al., Confinement 2018 (260)]

- ▶ in continuum limit
- at physical quark masses

▶ see talk by **Bastian Brandt** "Equation of state and Taylor expansions at nonzero isospin chemical potential", Thu. 9am

Quantum Hamiltonian for $N_{\rm f}=2$: Derivation

Dual representation for $N_{\rm f}=2$ (not sign problem-free for finite N_t) but sign-problem free in continuous time limit $N_t\to\infty$: [U., Lattice 2021]

• first: link integration for $N_{\rm f} > 1$:

$$\begin{split} \mathcal{J}(\mathcal{M},\mathcal{M}^\dagger) &= \int_{\mathrm{SU}(3)} dU e^{\mathrm{Tr}[U\mathcal{M}^\dagger + U^\dagger \mathcal{M}]} \\ &= \sum_{B=-N_\mathrm{f}}^{N_\mathrm{f}} \sum_{n_1,n_2,n_3} C_{B,n_1,n_2,n_3} \prod_{k=1}^3 \frac{X_i^{n_k}}{n_k!} \frac{D^B}{|B|!}, \quad D = \begin{cases} \det \mathcal{M} & B>0 \\ 1 & B=0 \\ \det \mathcal{M}^\dagger & B<0 \end{cases} \end{split}$$

- lacktriangle then: Grassmann integration for $N_{
 m f}>1$
- lacktriangledown due to continuous time limit, also for $N_{
 m f}>1$, only single mesons are interchanged between nearest neighbors

Quantum Hamiltonian for $N_{\rm f}=2$: Final Expression

The Hamiltonian has $N_{\rm f}^{\,2}$ contributions, one for each pseudoscalar meson:

partition function:

$$Z_{\text{CT}}(\mathcal{T}, \mu_{\mathcal{B}}, \mu_{\mathcal{I}}) = \text{Tr}_{\mathfrak{h}} \left[e^{(\hat{\mathcal{H}} + \hat{\mathcal{N}}_{B} \mu_{\mathcal{B}} + \hat{\mathcal{N}}_{I} \mu_{\mathcal{I}})/\mathcal{T}} \right] \qquad \mathfrak{h} \in \mathbb{H}_{\mathfrak{h}}$$
$$\hat{\mathcal{H}}_{I} = \frac{1}{2} \sum_{\langle \vec{x}, \vec{y} \rangle} \sum_{Q_{i} \in \{\pi^{+}, \pi^{-}, \pi_{U}, \pi_{D}\}} \left(\hat{J}_{Q_{i}, \vec{x}}^{+} \hat{J}_{Q_{i}, \vec{y}}^{-} + \hat{J}_{Q_{i}, \vec{x}}^{-} \hat{J}_{Q_{i}, \vec{y}}^{+} \right)$$

- ▶ for the transition $\mathfrak{h}_1 \mapsto \mathfrak{h}_2$, the matrix elements $\langle \mathfrak{h}_1 | Q_i | \mathfrak{h}_2 \rangle$ of $\hat{J}_{Q_i}^{\pm}$ are determined from Grassmann integration and diagonalization
- ightharpoonup only those matrix elements are non-zero which are consistent with current conservation of all Q_i , and turn out to be positive!

Hadronic States for $N_{\rm f}=2$

Local Hilbert space $\mathbb{H}_{\mathfrak{h}}$:

- multiplicities in basis $B,\,I$ and meson occupation number m

В	I	$\mathfrak{m} = 0$	$\mathfrak{m} = 1$	$\mathfrak{m}=2$	m = 3	$\mathfrak{m}=4$	$\mathfrak{m} = 5$	m = 6	Σ
-2	0	1							1
-2	Σ	1	0	0	0	0	0	0	1
-1	$\begin{array}{r} -\frac{3}{2} \\ -\frac{1}{2} \\ +\frac{1}{2} \\ +\frac{3}{2} \end{array}$	1	1	1	1				4
-1	$-\frac{1}{2}$	1	2	2	1				6
-1	$+\frac{1}{2}$	1	2	2	1				6
-1	$+\frac{3}{2}$	1	1	1	1				4
-1	Σ	4	6	6	4	0	0	0	20
0	-3				1 2				1
0	-2			1 2		1			4
0	-1		1	2	4	2	1		10
0	0	1	1 2 1	4	6	4	2	1	20
0	-1		1	2 1	4	2	1		10
0	-2			1	2 1	1			4
0	-3								1
0	Σ	1	4	10	20	10	4	1	50
1	$-\frac{3}{2}$	1	1	1	1				4
1	$-\frac{3}{2}$	1	2	2	1				6
1	$+\frac{3}{2}$	1	2	2	1				6
1	- 3 - 23 - 23 - 23 - 23 - 23 - 23 - 23 -	1	1	1	1				4
1	Σ	4	6	6	4	0	0	0	20
2	0	1							1
2	Σ	1	0	0	0	0	0	0	1
Σ		11	16	22	28	10	4	1	92

Hadronic states distinguished on the quark level

ightharpoonup state multiplicities: given B,I,m, states with same quark content have to be identified, e.g.

$$\pi_+\pi_- = \pi_U\pi_D$$
, $B_{uuu}\pi_D = B_{uud}\pi_-$, $B_{uuu}B_{ddd} = B_{uud}B_{udd}$

quark content not sufficient, some states have twofold degeneracy:

requires additional index in QMC simulations!

Static Limit for $N_{\rm f}=2$:

Static limit: $Z = Z_1^V$ with Z_1 is 1-dim QCD partition function

▶ in the chiral limit, all states $\mathfrak{h} \in \mathbb{H}_{\mathfrak{h}}$ contribute with a weight 1:

$$\begin{split} \mathcal{Z}\left(\frac{\mu_B}{T}, \frac{\mu_I}{T}\right) &= 2\cosh\frac{3\mu_I}{T} + 8\cosh\frac{2\mu_I}{T} + 20\cosh\frac{\mu_I}{T} + 20\\ &+ 8\cosh\frac{\mu_B}{T}\left(2\cosh\frac{\frac{3}{2}\mu_I}{T} + 3\cosh\frac{\frac{1}{2}\mu_I}{T}\right) + 2\cosh\frac{2\mu_B}{T} \end{split}$$

▶ af finite quark mass: via Conrey-Farmer-Zirnbauer formula

[Ravgali, Verbaarschot, PRD 76 (2007)]

• for degenerate quark mass $m \equiv m_u = m_d$, with $\mu_c = \mu_c(m)$:

$$\begin{split} \mathcal{Z}\left(\frac{\mu_B}{T},\frac{\mu_I}{T},\frac{\mu_c}{T}\right) &= 2\cosh\frac{3\mu_I}{T} + 4\left(\cosh\frac{\mu_c}{T}\right)^2\left(3 + 2\cosh\frac{4\mu_c}{T} + 2\cosh\frac{2\mu_I}{T}\right) \\ &+ 4\cosh\frac{\mu_I}{T}\left(2 + 2\cosh\frac{2\mu_c}{T} + \cosh\frac{4\mu_c}{T}\right) \\ &+ 8\cosh\frac{\mu_B}{T}\left(2\cosh\frac{\frac{3}{2}\mu_I}{T}\cosh\frac{\mu_c}{T} + \cosh\frac{\frac{1}{2}\mu_I}{T}\left(2\cosh\frac{2\mu_c}{T} + 1\right)\right) \\ &+ 2\cosh\frac{2\mu_B}{T} \end{split}$$

Results in the Static Limit: Finite Quark Mass

- for non-zero isospin chemical potential: baryon density has two transitions at low T
- ightharpoonup as $n_B=2$, the isospin density vanishes (Pauli saturation)
- ▶ similar finding as in Mean Field for strong coupling limit

 n_R

Setup of the QMC Simulations

QMC is realized as **Diagrammatic Monte Carlo** (continuous time version of the Worm algorithm):

- lacktriangle as for $N_{
 m f}=1$, a continuous Euclidean time Worm algorithm operates on the meson occupation numbers
 - move update: choose Worm head/tail for specific meson charge $Q=ar q_1q_2$, only accept if Q can be raised/lowered
 - shift update: move in temporal direction until pion is emitted/absorbed according to $J_{Q,x}^\dagger J_{Q,y}$, proportional to exponential decay $p(\Delta t) = e^{-\lambda \Delta t}$ with decay constant $\lambda = d_Q(\vec{x})/4T$
 - repeat [2] until Worm closes

New physics expected:

- single baryons can now coexist with pions, resulting in pion exchange between nucleons
- pion condensation competes with nuclear phase

Preliminary results

scan in baryon chemical potential at fixed isospin chemical potential:

- status: so far implemented in Python (data structures quite involved)
- modifying existing continuous time Worm in C++ to gain substantial speed up and scan the full phase diagram

Conclusions

Results:

- ▶ Hamiltonian formulation also completely sign problem-free for $N_{\rm f}=2$ (not the case for discrete $N_t!$)
- Matrix elements for the creation and annihilation operators \hat{J}^{\pm} have now been determined for $N_{\rm f}=2,3$
- First exploratory QMC simulations at $\mu_B > 0$, $\mu_I > 0$,

Goals:

- ▶ Determine the phase diagram in the T, μ_B, μ_I -space
- Measure nuclear potential to study pion exchange
- Include gauge corrections also for $N_{
 m f}=2$

Backup: Hamiltonian Formulation: Algebra $(N_{\rm f}=1)$

Interpretation:

- Pauli saturation holds on the level of the quarks and mesons have a fermionic substructure, |m⟩ bounded from above
 - ⇒ particle-hole symmetry, leading to "spin" algebra:

$$\hat{J}_1 = \frac{\sqrt{N_c}}{2} \left(\hat{J}^+ + \hat{J}^- \right), \quad \hat{J}_2 = \frac{\sqrt{N_c}}{2i} \left(\hat{J}^+ - \hat{J}^- \right),$$

$$\hat{J}_3 = i[J_1, J_2] = \frac{N_c}{2} [\hat{J}^+, \hat{J}^-], \quad \hat{J}^2 = \frac{N_c(N_c + 2)}{4}$$

▶ the "spin"-representation is $d = N_c + 1$ -dimensional, with $S = N_c/2$.

$$\begin{split} \mathfrak{m} &\mapsto \mathfrak{s} = \mathfrak{m} - \frac{N_{\mathrm{c}}}{2}: & \hat{J}_{3} \left| \frac{N_{\mathrm{c}}}{2}, \mathfrak{s} \right\rangle = \mathfrak{s} \left| \frac{N_{\mathrm{c}}}{2}, \mathfrak{s} \right\rangle, \\ \hat{J}^{2} \left| \frac{N_{\mathrm{c}}}{2} \mathfrak{s} \right\rangle &= \frac{N_{\mathrm{c}} \left(N_{\mathrm{c}} + 2 \right)}{4} \left| \frac{N_{\mathrm{c}}}{2}, \mathfrak{s} \right\rangle, & [\hat{J}^{2}, \hat{J}_{3}] = 0. \end{split}$$

Backup: Gauge contributions to the Hamiltonian $(N_{\rm f}=1)$

- on anisotropic lattices, the anisotropy $\xi=\frac{a_s}{a_t}$ is a function of two bare anisotropies γ_F and $\gamma_G=\sqrt{\frac{\beta_t}{\beta_s}}$
- ▶ in the continuous time limit $a_t \to 0$ ($\xi \to \infty$) and for small β , spatial plaquettes are suppressed over temporal plaquettes by $(\gamma_G \gamma_F)^{-2}$ \Rightarrow only consider temporal plaquettes:

ightharpoonup temporal plaquettes are of same order as meson exchange, but also allows to couple baryons! (\hat{J}^{\pm} still block-diagonal)

Backup: What does the Phase Diagram including β look like?

Phase Diagram in the Strong Coupling Regime: [Langelage et al. PRL 113 (2014)]

- has a chiral and nuclear transition
- important question: what happens to the chiral (tri)-critical point?

One of several **possible scenarios** for the extension to the continuum:

- back plane: strong coupling phase diagram ($\beta=0,~a$ large), $N_{\rm f}=1$
- ▶ front plane: continuum phase diagram $(\beta = \infty, a = 0), N_f = 4 \text{ (no rooting)}$

obtained via reweighting in eta

