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Context:

» Quantum Hamiltonian LQCD: has been established
for Nt =1 and in the strong coupling limit only

> allows to apply Quantum Monte Carlo algorithms for finite up
[Klegrewe, U. PRD 102 (2020)]

Aim: N¢ = 2 : Determine the phase diagram for
both finite baryon and isospin chemical potential

Content of the talk:
The Hamiltonian approach to Lattice QCD

Expectations from Meanfield Theory and HMC for Ny = 2
Setup of the Nt = 2 Quantum Monte Carlo Simulation

Preliminary results at finite up, s
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Lattice QCD in a Dual Formulation
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» Dual representation: color singlets from
integrating out gauge fields U, (x)

=

m unrooted staggered fermions, standard
Wilson gauge action

m at B = 0: link states are mesons and
baryons [Rossi, Wolff, NPB 248 (1984)]

m at 5 > 0: color singlets may include gluon

contributions [Gagliardi, U, PRD 101 (2020)] 2-dim. example of configuration
in terms of dual variables
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Lattice QCD in a Dual Formulation

» Dual representation: color singlets from
integrating out gauge fields U, (x)

m unrooted staggered fermions, standard
Wilson gauge action

m at B = 0: link states are mesons and
baryons [Rossi, Wolff, NPB 248 (1984)]

m at 3 > 0: color singlets may include gluon
contributions [Gagliardi, U, PRD 101 (2020)]

» Sign problem in regime § = % <1
mild enough to study full phase diagram:

m baryons are heavy: Af ~107°

m in continuous time limit N; — oo:
baryons become static
= finite density sign problem absent!

Quantum Hamiltonian is derived from
dual representation via continuous time limit!
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2-dim. example of configuration

in terms of dual variables

average sign, aT=15
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continuoys tme =
0.0008 - 1

0 005 01 0.15 02 025

average sign vanishes
for Ny — oo (a; — 0)
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Euclidean Continuous Time Limit

Introduce bare anisotropy ~ in Dirac couplings such that £ = %j # 1

Zetma )= S T Bedaesse [T 24 @am) [T wie )

{k,n,l} b=(z,n) T 4

> Non-perturbative result: &(v) ~ rky? + 1+>\v4’ Kk =0.781(1)
[de Forcrand, Vairinhos, U., PRD 97 (2018)]
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Euclidean Continuous Time Limit

Introduce bare anisotropy ~ in Dirac couplings such that £ = %j # 1

Zr(maq, 11,7y Z H NTkl:b 2kp S0 H f—j@amq)"x H'w(ﬁ, 1)

{k,n,l} b=(z,n) T 4

> Non-perturbative result: &(v) ~ rky? + 1+>\v4’ Kk =0.781(1)
[de Forcrand, Vairinhos, U., PRD 97 (2018)]

Define the continuous Euclidean time limit (CT-limit):

N; =00, &,v—00, al = —NHT(’Y,Nt) T:X,—i fixed

» only one parameter 7T setting the temperature
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Euclidean Continuous Time Limit

Introduce bare anisotropy ~ in Dirac couplings such that £ = %j # 1

Zr(maq, 11,7y Z H NTkl:b 2kp S0 H f—j@amq)"l H'w(ﬁ, 1)

{k,n,l} b=(z,n) T 4

> Non-perturbative result: &(v) ~ rky? + 1+>\v4’ Kk =0.781(1)
[de Forcrand, Vairinhos, U., PRD 97 (2018)]

Define the continuous Euclidean time limit (CT-limit):

N; =00, &,v—00, al = —NHT(’Y,Nt) T:X,—Zt fixed

» only one parameter 7T setting the temperature
Main advantages of CT-limit:
» no need to perform the continuum extrapolation a; — 0 (N; — 00)

» determine phase boundary unambiguously and more precisely, with a faster
algorithm (QMCQ)
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From Dimers to Meson Occupation Numbers (Ny = 1)

Correspondence between discrete and continuous time:

Parity L
(0)=+1 == e=—=e¢ o—o—o — Discrete Time
> alternating dimer chains (top) | (. i Ghaine
R (1) =—-1 F—e——o=—=o—- o= _
and meson occupation ==
€(2) = +1
numbers m (bottom): ) oS —
3 =-1 == = " = =
> multiple s_patlf'al dimers b_ecome P S B
resolved in single spatial _— | i Meson States
dimers, oriented consistently [
. €(2) = +1
due to even-odd ordering [
€(3) = =1 Eereereee
L.

» conservation law: for mesons connecting (z, y)

my—m,xl & mye—my;Fl

Wolfgang Unger QMC at non-zero Baryon and Isospin Density 5



Hamiltonian Formulation: Creation and Annihilation Operators

Derive Hamiltonian via diagrammatic expansion of Zgop = j{rim Zn,(7)
v, Nt —00
» express the partition function as series in inverse temperature 7% = %:
PR . 1 oA A . .
Zon (T g) = Try [P0 T | = 2 N7 (107 + J7 JF), K=Y
(Z,9) z

> the creation J* and annihilation operators J~ = (
. oA PN _ 3.
matrix elements (my|1jmz) with o = (0[1]2) =1, o1 = (1]1|1) = %

0 0 0 O 00 0 0
o 0 0 0 00 0 0
. 0 or 0 O N 00 0 0
Jt = 0 0 o 0 » “=1 90 0 0 o0
0 0 T 0
0 0 0 -1

> local Hilbert space per site: |h) € Hy = [0, 7, 27, 3m; BT, B7|
> block-diagonal structure due to commutation relation [#, ] = 0
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Phase Diagrams from Ny = 1 Hamiltonian LQCD

From Quantum Monte Carlo / Density of States Method:

» obtain baryonic observables and phase diagrams to high precision
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Expectations from Mean Field Theory at Strong Coupling (Nf=2)

mean field results for staggered fermions in 1/d expansion

> at non-zero isospin density: two CEP (first o, vanishes, then o)

Temperature T

pion condensation vanishes again at larger isospin density (Pauli saturation)

1

#=02, m=04
#=0
0.5F CEP CEP
"o
0y, 04 o d
?.5 é 2:5 é

Baryon Chemical Potential g
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[Nishida, PRD 69 (2004)]
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Expectations from Mean Field for 3-dim Effective Theory (Nf=2)

» mean field based on Polyakov loop effective theory
(Wilson fermions via hopping parameter expansion)

The (uy,up) phase diagram
Lpeee o

Hp

0.2 0.3 0.4

[from Master thesis of Amine Chabane (2022)]

» see next talk by Amine Chabane “Towards the phase diagram of cold and
dense heavy QCD", Mon. 5:30
and talk by Christoph Konrad “Mean-field approximation of effective
theories of lattice QCD", Fri. 6pm
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Expectations from HMC (Nf=2+1)

QCD phase diagram at non-zero isospin chemical potential:
[Brandt et al., Confinement 2018 (260)]

» in continuum limit

» at physical quark masses

180
170 ¢
__ 160
=
(]
= 150
: pion
140 ¢ condensation
130 +
120 : . .
0 0.5 1 1.5 2 2.5
ﬂl/mﬂ

» see talk by Bastian Brandt “Equation of state and Taylor expansions at
nonzero isospin chemical potential”, Thu. 9am
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Quantum Hamiltonian for N; = 2: Derivation

Dual representation for Ny = 2 (not sign problem-free for finite N;)
but sign-problem free in continuous time limit Ny — oco: [U., Lattice 2021]

» first: link integration for Ny > 1:

T(M, MT) = / aue MU MT+UT M)
SU(3)

N,
f X"k pB detM B >0

3
= § g CB,1L1,7L2,7L3 I | nk!__‘B‘!’ D = 1 B=0

+
B=—N¢nj,ng,n3 k=1 det MT B <0

» then: Grassmann integration for Ny > 1

» due to continuous time limit, also for Ny > 1,
only single mesons are interchanged between nearest neighbors
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Quantum Hamiltonian for N; = 2: Final Expression

The Hamiltonian has Nf2 contributions, one for each pseudoscalar meson:

» partition function:

Zer (T, ps, pz) = Try { (HH\?B“BJFNI“I)/T} h € Hy

%;: 3 (.]5“ J> ,a+J_“mJQ“y)

§) Qi€{nt, 7~ ,mu,7p}

i

> for the transition by — by, the matrix elements (h|Q;|h2) of jg are
determined from Grassmann integration and diagonalization

» only those matrix elements are non-zero which are consistent with current
conservation of all @;, and turn out to be positive!
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Hadronic States for Ny = 2

Local Hilbert space IHj:
- multiplicities in basis B, I and meson occupation number m

B I m =20 m=1 m =2 m =3 m=4 m=>5 m =6 >

-2 0 1 1

-2 P 1 0 0 0 0 0 0 1

-1 —% 1 1 1 1 4

-1 7? 1 2 2 1 6

1 +§ 1 2 2 1 6

1| +5 1 1 1 1 4

-1 P 4 6 6 4 0 0 0 20

0 -3 1 1

0 2 1 2 1 4

0 -1 1 2 4 2 1 10

0 0 1 2 4 6 4 2 1 20

0 -1 1 2 4 2 1 10

0 -2 1 2 1 4

0 -3 1 1

0 > 1 4 10 20 10 4 1 50

1 —i 1 1 1 1 4

1 75 1 2 2 1 6

1 +5 1 2 2 1 6

1 +5 1 1 1 1 4

1 p3} 4 6 6 4 0 0 0 20
[2] o 1T ] \ \ \ \ \ [ 1]
2] [ v [ o [ o [ o [ o [ o [ 0o [ 1]
[ ] [ 11 | 16 [ 22 [ 28 [ 10 | 4 [ 1 [o92]
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Hadronic states distinguished on the quark level

» state multiplicities: given B, I, m, states with same quark content have to
be identified, e.g.

T4m_ =TuTp,  Buwu™p = Buwd®™=,  BuwuBddd = BuudBudd

» quark content not sufficient, some states have twofold degeneracy:

B 1 m quarkstate wudd

B I m quark state iudd
711 a2 0 0003(0)
3 00 0 0000(0)
72 1 32 1 1103(0)
7 00 1 0011(0)
731 a2 2 2203(0)
800 1 1100()
74 1 32 3 3303(0)
ooz 0022() B I m quark state iudd 75102 0 0102(0)
0 00 2 1111(0
© s 0 1 1 011000 76 1 -2 1 011300
Seerwuw
o1 2 0121(0) 712 1 1202(0)
2 00 2 220000 .
a3 00 3 0033(0) ®ore rero© e I i it
HhNI MO mois mag PR w00 » requires additional
0 01 3 12210 80 1 U2 3 2313(0) ; d . MC
- mimo 02010 index in
4 00 3 2211(0) 6 01 3 231000 82 1 V2 1 0212(0) . I t |
- (N @1k 100 Simulations:
63 01 4 1232(0)
48 00 3 330000 84 1 V2 2 0223(0)
64 01 4 2321(0)
49 00 4 113300 8 1 12 2 1312(0)
65 01 5 2332(0)
50 0 0 4 2222(0) 8 1 12 3 1323(0)
66 02 2 0220(0)
51 87 1 32 0 0300(0)
52 00 4 331100 (7 02310 88 1 a2 1 0311(0)
5300 5 2233(0) 68023 13200 8 1 32 2 0322(0)
54 00 5 3322(0) € 02 4 133100 0 1 32 3 0333(0)
5 00 6 3333(0) LA 0330(0) 91 2 0 0 0303(0)
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Static Limit for Ny = 2:

Static limit: Z = Z1V with Z7 is 1-dim QCD partition function
> in the chiral limit, all states h € Iy, contribute with a weight 1:

3 2
zZ (M—B,ﬂ) :2(:oshﬂ +8005hﬂ +20coshﬂ+20
T'T T T T

3 1
2 1 2
—I—Eicoshl2 2cosh2—m +3cosh2—m -i—QCoshﬂ
T T T T

» af finite quark mass: via Conrey-Farmer-Zirnbauer formula
[Ravgali, Verbaarschot, PRD 76 (2007)]

» for degenerate quark mass m = m,, = mgq, with p. = p.(m):

2 4 2
zZ (—#B R ﬂ, &> = 2cosh —3“1 +4 (cosh &> (3 + 2 cosh ZHe + 2 cosh _,u1>
T T'T T T T T

2 4
+4cosh% (2+2cosh% + cosh ;C)

3 1

2 5 2

+ 8 cosh BB 2 cosh pLal cosh e + cosh e <2 cosh Zhe + 1)
T T T T T

2pB

+ 2 cosh
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Results in the Static Limit: Finite Quark Mass

» for non-zero isospin chemical potential: baryon density has two transitions

>

at low T’

as np = 2, the isospin density vanishes (Pauli saturation)

» similar finding as in Mean Field for strong coupling limit

np
2.0

15

10

05

n,
=10, T/ms =001 ! =10, Tfms=0.01
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Setup of the QMC Simulations

QMC is realized as Diagrammatic Monte Carlo (continuous time version of
the Worm algorithm):
» as for Ny =1, a continuous Euclidean time Worm algorithm operates on
the meson occupation numbers
move update: choose Worm head/tail for specific meson charge
Q = G1g2, only accept if Q can be raised/lowered
shift update: move in temporal direction until pion is
emitted/absorbed according to Jgg7xJQ7y, proportional to exponential
decay p(At) = et with decay constant A\ = dg (%) /4T
repeat [2] until Worm closes

New physics expected:

P single baryons can now coexist with pions, resulting in pion exchange
between nucleons

» pion condensation competes with nuclear phase
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Preliminary results

» scan in baryon chemical potential at fixed isospin chemical potential:

baryon density at T=0.05, 43CT

2
mu|=0.‘0 —— ‘ ‘ ‘
mui=0.5 ——
5+ /o
1.5 /
1 i
05 —
0 L
0 0.5 1 1.5 2 25 3

> status: so far implemented in Python (data structures quite involved)

» modifying existing continuous time Worm in C+—+ to gain substantial
speed up and scan the full phase diagram
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Conclusions

Results:

» Hamiltonian formulation also completely sign problem-free for Ny = 2
(not the case for discrete N;!)

» Matrix elements for the creation and annihilation operators J*
have now been determined for Ny = 2,3

» First exploratory QMC simulations at pup > 0, uy > 0,

Goals:
» Determine the phase diagram in the T, ug, pr-space
» Measure nuclear potential to study pion exchange

» Include gauge corrections also for Ny = 2
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Backup: Hamiltonian Formulation: Algebra (N; = 1)

Interpretation:

» Pauli saturation holds on the level of the quarks and mesons have a
fermionic substructure, |m) bounded from above
= particle-hole symmetry, leading to “spin” algebra:

h= YN () = (),

Nc I+ 7 A2_NC(Nc+2)
2 [J 7‘] }7 ‘] - 4

Js =ilJy, o] =

» the “spin”-representation is d = N, + 1-dimensional, with S = N./2.

N = | Ne Ne
mr—>5=m—7: J3 7,5>=5 7,5>,
j2 %5>:_NC(J\;C+2) '%75>7 [j2,j3]:0.
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Backup: Gauge contributions to the Hamiltonian (Vy = 1)

> on anisotropic lattices, the anisotropy £ = ‘;—t is a function of two bare
anisotropies yr and vg = 4 /%

» in the continuous time limit a; — 0 (£ — o0) and for small 5,
spatial plaquettes are suppressed over temporal plaquettes by (ygvr) 2

= only consider temporal plaquettes:
L I
O ol | O] | |O|

a4 .l g

1

w=1.000 w=1.000 w=0.816 w=0.577

» temporal plaquettes are of same order as meson exchange, but also allows
to couple baryons! (J7 still block-diagonal)
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Backup: What does the Phase Diagram including 3 look like?

Phase Diagram in the Strong Coupling Regime: [Langelage et al. PRL 113 (2014)]

T flat. units]

16
14
12 b7
1 4
» has a chiral and nuclear transition o

> important question: what happens to the 04
chiral (tri)-critical point?

g [at. units]

One of several possible scenarios for the exten- ©Ptained via reweighting in 3

sion to the continuum:

» back plane: strong coupling phase diagram
(B=0, alarge), Np=1

> front plane: continuum phase diagram
(B =00, a=0), Ny =4 (no rooting)

Chiral Transition Nuclear Transition
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