Equation of state and Taylor expansions at nonzero isospin chemical potential

Bastian Brandt

Universität Bielefeld

Francesca Cuteri & Gergely Endrődi

CRC-TR 211 Strong-interaction matter under extreme conditions

11.08.2022

QCD at non-zero chemical potential

Convenient chemical potential basis for simulations: ("isospin" basis)

$$\mu_u = \mu_L + \mu_I \qquad \qquad \mu_d = \mu_L - \mu_I \qquad \qquad \mu_s$$

 $\mu_L = \mu_s = 0$ $\mu_I \neq 0,$

pure isospin chemical pot. – no sign problem

Continuum extrapolated phase diagram:

[Brandt, Endrődi, Schmalzbauer '18]

- physical pion masses

▶ improved actions (staggered) ▶ $T \neq 0$: $N_t = (6,) 8, 10, 12$ ▶ T = 0: a = 0.22, 0.15 [0.1] fm

The equation of state

II The speed of sound

III Extension to $\mu_L \neq 0$ via Taylor expansion

I The equation of state

$$p(T = 0, \mu_I = 0) = 0 \qquad n_I = \frac{\partial p}{\partial \mu_I} \qquad \epsilon = -p + n_I \mu_I$$

$$\Rightarrow \quad p(0, \mu_I) = \int_0^{\mu_I} d\mu \, n_I(0, \mu_I) \qquad I(0, \mu_I) = -4p + n_I(0, \mu_I) \mu_I$$

can be obtained from $n_I(0,\mu_I)$

here: use all spline interpolations which provide "good" description of n_I

$$p(T = 0, \mu_I = 0) = 0 \qquad n_I = \frac{\partial p}{\partial \mu_I} \qquad \epsilon = -p + n_I \mu_I$$

$$\Rightarrow \quad p(0, \mu_I) = \int_0^{\mu_I} d\mu \, n_I(0, \mu_I) \qquad I(0, \mu_I) = -4p + n_I(0, \mu_I) \mu_I$$

can be obtained from $n_I(0,\mu_I)$

here: use all spline interpolations which provide "good" description of n_I

T = 0 never exactly fulfilled
 → use large N_t so that T ≈ 0
 correct for T ≠ 0 effects with χPT particularly relevant for μ_I ≈ m_π/2

$$p(T = 0, \mu_I = 0) = 0 \qquad n_I = \frac{\partial p}{\partial \mu_I} \qquad \epsilon = -p + n_I \mu_I$$

$$\Rightarrow \quad p(0, \mu_I) = \int_0^{\mu_I} d\mu \, n_I(0, \mu_I) \qquad I(0, \mu_I) = -4p + n_I(0, \mu_I) \mu_I$$

can be obtained from $n_I(0,\mu_I)$

here: use all spline interpolations which provide "good" description of n_I

T = 0 never exactly fulfilled
 → use large N_t so that T ≈ 0
 correct for T ≠ 0 effects with χPT particularly relevant for μ_I ≈ m_π/2

• initial $a \approx 0.29$ fm simulations [Brandt *et al* '18]

$$p(T = 0, \mu_I = 0) = 0 \qquad n_I = \frac{\partial p}{\partial \mu_I} \qquad \epsilon = -p + n_I \mu_I$$

$$\Rightarrow \quad p(0, \mu_I) = \int_0^{\mu_I} d\mu \, n_I(0, \mu_I) \qquad I(0, \mu_I) = -4p + n_I(0, \mu_I) \mu_I$$

can be obtained from $n_I(0,\mu_I)$

here: use all spline interpolations which provide "good" description of n_I

T = 0 never exactly fulfilled
 → use large N_t so that T ≈ 0
 correct for T ≠ 0 effects with χPT particularly relevant for μ_I ≈ m_π/2

- initial $a \approx 0.29$ fm simulations [Brandt *et al* '18]
- $a \approx$ 0.22, 0.15 fm towards continuum

• in good agreement with NLO χ PT [Adhikari, Andersen '19]

• currently: analyse $a \approx 0.1$ fm lattices

Equation of state: $T \neq 0$

Equation of state: $T \neq 0$

• computation of Δp : $\Delta p(T, \mu_I) = \int_0^{\mu_I} d\mu \, n_I(T, \mu)$

• computation of ΔI :

Starting point:
$$\frac{\Delta I(T,\mu_I)}{T^4} = T \frac{\partial}{\partial T} \left(\frac{\Delta p(T,\mu_I)}{T^4} \right) + \frac{\mu_I n_I(T,\mu_I)}{T^4}$$

$$\longrightarrow \Delta I(T,\mu_I) = \int_0^{\mu_I} d\mu'_I \Big(T\frac{\partial}{\partial T} - 4\Big) n_I(T,\mu'_I) + \mu_I n_I(T,\mu_I)$$

again: use all spline interpolations which provide "good" description of n_I

Computing the EoS at $T \neq 0 - N_t = 8$

Computing the EoS at $T \neq 0$

II The speed of sound

Other interesting quantity: speed of sound c_s

definition at $\mu \neq 0$: $c_s^2 = \frac{\partial p}{\partial \epsilon}$ $\mathbb{O}\left[\frac{s}{n_I} = \text{const}; \frac{n_I}{n_L} = \text{const}; \dots\right]$

CRC-TR 211

Other interesting quantity: speed of sound c_s

definition at
$$\mu_I \neq 0$$
: $c_s^2 = \frac{\partial p}{\partial \epsilon} |$ $@\left[\frac{s}{n_I} = \text{const}\right]$

 \rightarrow compute directional derivative of p and ϵ :

$$c_s^2 = \frac{\partial p}{\partial \xi} \left(\frac{\partial \epsilon}{\partial \xi} \right)^{-1}$$
 with $\frac{\partial}{\partial \xi} \left(\frac{s}{n_I} \right) = 0$

Other interesting quantity: speed of sound c_s

definition at $\mu_I \neq 0$: $c_s^2 = \frac{\partial p}{\partial \epsilon} |$ $@\left[\frac{s}{n_I} = \text{const}\right]$

 \rightarrow compute directional derivative of p and ϵ :

CRC-TR 211

Other interesting quantity: speed of sound c_s

definition at
$$\mu_I \neq 0$$
: $c_s^2 = \frac{\partial p}{\partial \epsilon} |$ $@\left[\frac{s}{n_I} = \text{const}\right]$

 \rightarrow compute directional derivative of p and ϵ :

$c_s^2 = \frac{\partial p}{\partial \xi} \left(\frac{\partial \epsilon}{\partial \xi}\right)^{-1}$	with	$\frac{\partial}{\partial\xi} \left(\frac{s}{n_I}\right) = 0$
$\partial \xi \setminus \partial \xi$		$O\zeta \langle n_I \rangle$

$$\blacktriangleright T = 0: \quad \frac{\partial}{\partial \xi} = \frac{\partial}{\partial \mu_I}$$

• $T \neq 0$: $\frac{\partial}{\partial \xi}$ mixed $T \& \mu_I$ dervivative – compute analytically via

- the spline interpolation for $n_I(T,\mu_I)$
- \bullet analytic interpolations for p(T,0) and I(T,0) from % p(T,0) [Borsanyi $et \; al$ '13]

$$\frac{I(T,0)}{T^4} = e^{-h_1/t - h_2/t^2} \left(h_0 + \frac{f_0 \left[\tanh(f_1 t + f_2) + 1 \right]}{1 + g_1 t + g_2 t^2} \right)$$

Speed of sound at $T \neq 0$

• $T \ll T_c$ & $\mu_I \gg m_\pi/2$: $c_s^2 > 1/3$ – conformal limit [Cherman, Cohen, Nellore '09]

towards continuum:

pushed to smaller ${\boldsymbol{T}}$

III Extension to $\mu_L \neq 0$ via Taylor expansion

Extension to baryon chemical potential

Eventually: $\mu_I, \, \mu_L, \, \mu_s$ parameter space

Extension to μ_L , $\mu_s \neq 0$:

Taylor expansion around $\mu_I \neq 0$

here: focus on μ_L direction

Extension to baryon chemical potential

Eventually: μ_I , μ_L , μ_s parameter space Extension to μ_L , $\mu_s \neq 0$: Taylor expansion around $\mu_I \neq 0$ here: focus on μ_L direction $\frac{p(T,\mu)}{T^4} = \sum_{m=0}^\infty \frac{\chi_m^L(T,\mu_I)}{m!} \Big(\frac{\mu_L}{T}\Big)^m$ $\chi_m^L(T,\mu_I) = \frac{\partial^m [p(T,\mu)/T^4]}{(\partial \mu_L/T)^m}$

Extension to baryon chemical potential

Eventually: μ_I , μ_L , μ_s parameter space Extension to μ_L , $\mu_s \neq 0$: Taylor expansion around $\mu_I \neq 0$ here: focus on μ_L direction $\frac{p(T,\mu)}{T^4} = \sum_{m=0}^\infty \frac{\chi_m^L(T,\mu_I)}{m!} \Big(\frac{\mu_L}{T}\Big)^m$ μ_L $\chi_m^L(T,\mu_I) = \frac{\partial^m [p(T,\mu)/T^4]}{(\partial \mu_L/T)^m}$ 2 • first results for $\chi_2^L(T, \mu_I)$: χ^L_2/m^2_π $T \approx 0$ (30 MeV) for $a \approx 0.15$ fm at first glance: looks good 0 but what about this λ ?

CRC-TR 211

Spontaneous sym. breaking @ BEC phase:

CRC-TR 211

Spontaneous sym. breaking @ BEC phase:

- ----> Goldstone mode zero mode
- for simulations:

need to introduce a regulator

 $-\lambda$ (pion source) [Kogut, Sinclair '02]

 $\bar{\psi}\gamma_5\tau_1\psi$

CRC-TR 211

Spontaneous sym. breaking @ BEC phase:

- ----> Goldstone mode zero mode
- for simulations:

need to introduce a regulator

- λ (pion source) [Kogut, Sinclair '02]
- ▶ physical results: extrapolate $\lambda \to 0$ reliable extrapolations: main task for analysis

Spontaneous sym. breaking @ BEC phase:

- → Goldstone mode zero mode
- for simulations:

need to introduce a regulator

- λ (pion source) [Kogut, Sinclair '02]
- ▶ physical results: extrapolate $\lambda \to 0$ reliable extrapolations: main task for analysis
- facilitated by improvement program:
 [Brandt, Endrődi, Schmalzbauer '18]
 - leading order reweighting
 - valence quark improvement
 - condensates/densities:

works well for $T\neq 0$

Spontaneous sym. breaking @ BEC phase:

- → Goldstone mode zero mode
- for simulations:

need to introduce a regulator

- λ (pion source) [Kogut, Sinclair '02]
- ▶ physical results: extrapolate $\lambda \to 0$ reliable extrapolations: main task for analysis
- facilitated by improvement program:
 [Brandt, Endrődi, Schmalzbauer '18]
 - leading order reweighting
 - valence quark improvement
 - condensates/densities:

works well for $T \neq 0$ & T = 0

well for $T \neq 0$ & T = 0

Spontaneous sym. breaking @ BEC phase:

- → Goldstone mode zero mode
- for simulations:

need to introduce a regulator

- λ (pion source) [Kogut, Sinclair '02]
- ▶ physical results: extrapolate $\lambda \to 0$ reliable extrapolations: main task for analysis
- facilitated by improvement program:
 [Brandt, Endrődi, Schmalzbauer '18]
 - leading order reweighting
 - valence quark improvement
 - condensates/densities:

works well for $T \neq 0$ & T = 0

susceptibilities?

 $\begin{array}{ll} \mbox{Singular values:} & D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n & D(\mu) \mbox{: massive Dirac operator} \\ \mbox{improvement:} & \lim_{\lambda \to 0} \left\langle \hat{O} \right\rangle = \lim_{\lambda \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle \\ \end{array}$

 $\begin{array}{ll} \mbox{Singular values:} & D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n & D(\mu) \mbox{:} \mbox{ massive Dirac operator} \\ \mbox{improvement:} & \lim_{\lambda \to 0} \left\langle \hat{O} \right\rangle = \lim_{\lambda \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle \\ \end{array}$

condensates/densities:

$$\sim \left\langle \operatorname{Tr}(OM^{-1}) \right\rangle = \left\langle \sum_{n=0}^{N_{\max}} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle$$

here:
$$M = D^{\dagger}(\mu)D(\mu) + \lambda^2$$
 $O_{nm} = \varphi_n^{\dagger}O\varphi_m$

 $\begin{array}{ll} \mbox{Singular values:} & D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n & D(\mu) \mbox{:} \mbox{ massive Dirac operator} \\ \mbox{improvement:} & \lim_{\lambda \to 0} \left\langle \hat{O} \right\rangle = \lim_{\lambda \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle \\ \end{array}$

condensates/densities:

$$\sim \left\langle \operatorname{Tr}(OM^{-1}) \right\rangle \quad \approx \left\langle \sum_{n=0}^{N} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle$$

here:
$$M = D^{\dagger}(\mu)D(\mu) + \lambda^2$$
 $O_{nm} = \varphi_n^{\dagger}O\varphi_m$

Singular values: $D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n$ $D(\mu)$: massive Dirac operator $\lim_{N \to 0} \left\langle \hat{O} \right\rangle = \lim_{N \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle$ improvement: $\mu_I / m_{\pi} = 0.5$ = 124 MeVcondensates/densities: $\sim \left\langle \mathsf{Tr}(OM^{-1}) \right\rangle \approx \left\langle \sum_{n=0}^{N} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle \xrightarrow{\widehat{\mathbb{Q}}}_{-0.4}^{2}$ $a\lambda = 0.0006$ condensates/densities: 0 2040 60 80 100 120define: $\delta_O^N = \sum_{n=1}^N O_{nn} \left(\frac{1}{\xi_n^2 + \lambda^2} - \frac{1}{\xi_n^2} \right)$ N

$$\label{eq:matrix} \mbox{here:} \quad M = D^\dagger(\mu) D(\mu) + \lambda^2 \qquad O_{nm} = \varphi_n^\dagger O \varphi_m$$

Singular values: $D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n$ $D(\mu)$: massive Dirac operator $\lim_{N \to 0} \left\langle \hat{O} \right\rangle = \lim_{N \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle$ improvement: $\mu_I/m_{\pi} = 0.58$ $a\lambda = 0.0018$ -0.2condensates/densities: $\delta^N_{n_I}/\langle n_I(\lambda)\rangle$ -0.4 $\sim \left\langle \mathsf{Tr}(OM^{-1}) \right\rangle \approx \left\langle \sum_{n=0}^{N} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle$ თ -0.60 2040 60 80 100 120define: $\delta_O^N = \sum_{n=1}^N O_{nn} \left(\frac{1}{\xi_n^2 + \lambda^2} - \frac{1}{\xi_n^2} \right)$ N

$$\label{eq:matrix} \mbox{here:} \quad M = D^\dagger(\mu) D(\mu) + \lambda^2 \qquad O_{nm} = \varphi_n^\dagger O \varphi_m$$

Singular values: $D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n$ $D(\mu)$: massive Dirac operator improvement: $\lim_{\lambda \to 0} \left\langle \hat{O} \right\rangle = \lim_{\lambda \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle$ $/m_{\pi} = 0.58$ $\sim \left\langle \mathsf{Tr}(OM^{-1}) \right\rangle \approx \left\langle \sum_{n=0}^{N} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle \overset{\widehat{\mathfrak{T}}}{\approx} \left| \sum_{k=0}^{N-0.4} |$ condensates/densities: თ 0 2040 60 80 100 120define: $\delta_O^N = \sum_{n=1}^{N} O_{nn} \left(\frac{1}{\xi_n^2 + \lambda^2} - \frac{1}{\xi_n^2} \right)$ N susceptibilities: $\sim \left\langle \operatorname{Tr}(O_1 M^{-1} O_2 M^{-1}) \right\rangle$ $=\left\langle \sum_{n=0}^{N_{\max}} \frac{O_{1;nm}}{\xi_m^2 + \lambda^2} \frac{O_{2;mn}}{\xi_n^2 + \lambda^2} \right\rangle$

 $\label{eq:matrix} {\rm here:} \quad M = D^\dagger(\mu) D(\mu) + \lambda^2 \qquad O_{nm} = \varphi_n^\dagger O \varphi_m$

Singular values: $D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n$ $D(\mu)$: massive Dirac operator improvement: $\lim_{\lambda \to 0} \left\langle \hat{O} \right\rangle = \lim_{\lambda \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle$ $/m_{\pi} = 0.58$ $\sim \left\langle \mathsf{Tr}(OM^{-1}) \right\rangle \approx \left\langle \sum_{n=0}^{N} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle \xrightarrow{\widehat{\mathfrak{T}}}_{\xi_n^{\mathfrak{T}}} |$ $a\lambda = 0.0018$ condensates/densities: თ 0 2040 60 80 100 120define: $\delta_O^N = \sum_{n=1}^{N} O_{nn} \left(\frac{1}{\xi_n^2 + \lambda^2} - \frac{1}{\xi_n^2} \right)$ N susceptibilities: $\sim \left\langle \operatorname{Tr}(O_1 M^{-1} O_2 M^{-1}) \right\rangle$ $\approx \left\langle \sum_{n=1}^{N} \frac{O_{1;nm}}{\xi_m^2 + \lambda^2} \frac{O_{2;mn}}{\xi_n^2 + \lambda^2} \right\rangle$

 $\label{eq:matrix} \mbox{here:} \quad M = D^{\dagger}(\mu) D(\mu) + \lambda^2 \qquad O_{nm} = \varphi_n^{\dagger} O \varphi_m$

Singular values: $D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n$ $D(\mu)$: massive Dirac operator improvement: $\lim_{N \to 0} \left\langle \hat{O} \right\rangle = \lim_{N \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle$ $\mu_I/m_{\pi} = 0.58$ $a\lambda = 0.0018$ $\delta^N_{n_I}/\langle n_I(\lambda)\rangle$ condensates/densities: $\sim \left\langle \mathsf{Tr}(OM^{-1}) \right\rangle \approx \left\langle \sum_{n=0}^{N} \frac{\varphi_{n}^{\dagger} O \varphi_{n}}{\xi_{n}^{2} + \lambda^{2}} \right\rangle$ -0.60 2040 60 80 100 120define: $\delta_O^N = \sum^N O_{nn} \left(\frac{1}{\xi_n^2 + \lambda^2} - \frac{1}{\xi_n^2} \right)$ N susceptibilities: $\left(\begin{pmatrix} \chi_{2}^{r} \\ \chi \end{pmatrix} \right)_{z_{1}^{N}} = 0.5$ $\sim \left\langle \operatorname{Tr}(O_1 M^{-1} O_2 M^{-1}) \right\rangle$ 4 MeV $\approx \left\langle \sum_{n=m=0}^{N} \frac{O_{1;nm}}{\xi_m^2 + \lambda^2} \frac{O_{2;mn}}{\xi_n^2 + \lambda^2} \right\rangle$ $a\lambda = 0.0006$ 0 20 40 60 80 100 120N $M = D^{\dagger}(\mu)D(\mu) + \lambda^2$ $O_{nm} = \varphi_n^{\dagger} O \varphi_m$ here:

Singular values: $D^{\dagger}(\mu)D(\mu)\varphi_n = \xi_n^2\varphi_n$ $D(\mu)$: massive Dirac operator improvement: $\lim_{\lambda \to 0} \left\langle \hat{O} \right\rangle = \lim_{\lambda \to 0} \left\langle \hat{O} - \delta_O^N \right\rangle$ $\mu_I/m_{\pi} = 0.58$ $a\lambda = 0.0018$ $\delta^N_{n_I}/\langle n_I(\lambda)\rangle$ condensates/densities: $\sim \left\langle \mathsf{Tr}(OM^{-1}) \right\rangle \approx \left\langle \sum_{n=1}^{N} \frac{\varphi_n^{\dagger} O \varphi_n}{\xi_n^2 + \lambda^2} \right\rangle$ -0.60 2040 60 80 100 120define: $\delta_O^N = \sum^N O_{nn} \left(\frac{1}{\xi_n^2 + \lambda^2} - \frac{1}{\xi_n^2} \right)$ N $\mu_I/m_{\pi} = 0.58$ $a\lambda = 0.0018$ susceptibilities: $\widehat{(\mathsf{S})}_{\frac{1}{2}\mathsf{K}^{\mathsf{S}}}^{-4} - 4 \left| \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{K}^{\mathsf{S}}} \\ \mathsf{K}^{\mathsf{S}} \\ \mathsf{K}^{\mathsf{S}}} - 6 \right| \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{K} \\ \mathsf{K}^{\mathsf{S}}} \end{array} + 6 \left| \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{K} \\ \mathsf{K$ $\sim \left\langle \operatorname{Tr}(O_1 M^{-1} O_2 M^{-1}) \right\rangle$ $\approx \left\langle \sum_{n=1}^{N} \frac{O_{1;nm}}{\xi_m^2 + \lambda^2} \frac{O_{2;mn}}{\xi_n^2 + \lambda^2} \right\rangle$ 0 20 4060 80 100120N $O_{nm} = \varphi_n^{\dagger} O \varphi_m$ $M = D^{\dagger}(\mu)D(\mu) + \lambda^2$ here:

Conclusions

- continuum limit in progress
- needs $N_t = 16$ lattices

Speed of sound

for $T \ll T_c$ & $\mu_I \gg m_\pi/2$: larger than conformal limit [Cherman, Cohen, Nellore '09]

- implications for EoS modelling based on neutron star radii and masses [e.g.: Tews et al '18; Annala et al '20]
- Taylor epansion to $\mu_L \neq 0$ from $\mu_I \neq 0$

work in progress ...

problem: reliable λ -extrapolations for χ_2^L

