Isosinglet and Isovector Nucleon Charges

Daniel Jenkins

University of Regensburg

Collaborators: Gunnar Bali, Sara Collins, Lisa Walter, Simon Weishäupl

Lattice 2022 Bonn 8th August 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

Definitions

The nucleon charges are (forward limit) matrix elements $\langle p | \overline{u} \Gamma d | n \rangle$, where

 $\Gamma \in \{\mathbb{I}, \gamma^5 \gamma^{\mu}, \gamma^{\mu}, \gamma^{\mu} \gamma^{\nu}\}$ defines the charge. In the isospin limit the charges can be written as

$$\langle p|\overline{u}\Gamma d|n\rangle = \langle n|(\overline{d}\Gamma d - \overline{u}\Gamma u)|n\rangle = \langle p|(\overline{u}\Gamma u - \overline{d}\Gamma d)|p\rangle = g_{\Gamma}^{u} - g_{\Gamma}^{d} = g_{\Gamma}$$

These charges are relevant for:

- Scalar g_S^q ($\Gamma = \mathbb{I}$) and sigma terms $\sigma_q = m_q \langle N | \overline{q}q | N \rangle$.
 - Decomposition of the nucleon mass.
 - Calculation of dark matter-nucleon scattering cross sections within dark matter models.

• Axial
$$g^q_A \ (\Gamma = \gamma^5 \gamma^\mu).$$

Intrinsic quark spin contribution to nucleon spin.

- Tensor $g_T^q \ (\Gamma = \gamma^{\mu} \gamma^{\nu}).$
 - Can be used to constrain fits to transversity PDFs [Huey-Wen Lin et. al.: arXiv:1710.09858].
- Vector g_V^q $(\Gamma = \gamma^{\mu})$.
 - Isovector $g_V = 1$ provides a good sanity check.

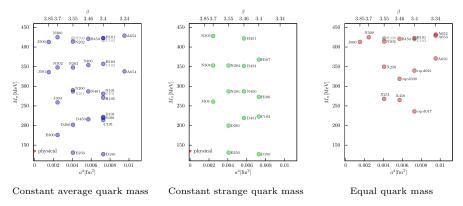
The isovector g_A and g_V appear in the β -decay rate within the standard model at tree level, however, there may be BSM scalar and tensor interactions too.

The action used by CLS [M. Bruno: arXiv:1411.3982] consists of the Lüscher-Weisz gluonic action, and the $N_f = 2 + 1$ Sheikholeslami-Wohlert fermionic action.

Aspects of note:

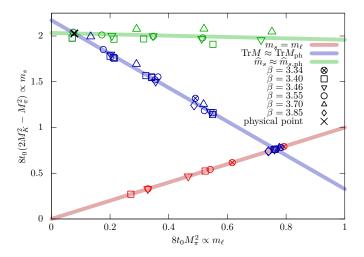
- Chiral symmetry breaking by the Wilson Fermion Term $a \nabla^*_{\mu} \nabla_{\mu}$.
- $\mathcal{O}(a)$ improvement via the Clover term $\hat{F}_{\mu\nu}$, where the c_{SW} coefficient is determined non-perturbatively [J. Bulava: arXiv:1304.7093].
- Some ensembles have open boundary conditions in time.

Ensembles



Geometries A: $(24^3, 48)$ B: $(32^3, 64)$ C: $(48^3, 96)$ D: $(64^3, 128)$ E: $(96^3, 192)$ H: $(32^3, 96)$ J: $(64^3, 192)$ N: $(48^3, 128)$ S: $(32^3, 128)$ U: $(24^3, 128)$ X: $(48^3, 64)$.

Six lattice spacings with 0.039 fm < a < 0.098 fm. Pion masses between 130 and 420 MeV. Typically between 1000 and 2000 configs each. $Lm_{\pi} \gtrsim 4$, with some smaller L for volume studies.



These three trajectories tightly constrain the quark mass dependence.

Correlation Functions

The correlation functions in the forward limit that we use are:

$$C_{2pt}(t_f, t_i) = \left\langle \mathcal{N}(t_f) \overline{\mathcal{N}}(t_i) \right\rangle$$

$$C_{3pt}(t_f, t, t_i) = \left\langle \mathcal{N}(t_f) J(t) \overline{\mathcal{N}}(t_i) \right\rangle - \left\langle J(t) \right\rangle \left\langle \mathcal{N}(t_f) \overline{\mathcal{N}}(t_i) \right\rangle$$

• \mathcal{N} (resp. $\overline{\mathcal{N}}$) is the interpolation operator that destroys (creates) a nucleon.

• $J(t) = \overline{q}(t)\Gamma q(t)$ is the current.

Related to the matrix elements via the spectral decomposition (with the first excitation).

$$C_{2pt}(t_f, t_i = 0) \sim Z_1^2 e^{-t_f m} \left[1 + \frac{Z_2^2}{Z_1^2} e^{-\Delta m t_f} \right]$$

$$\begin{split} C_{3pt}(t_f,t,t_i=0) &\sim Z_1^2 \mathrm{e}^{-t_f m} \left[\left\langle 1|J|1 \right\rangle + \frac{Z_2}{Z_1} \left\langle 2|J|1 \right\rangle \left(\mathrm{e}^{-\Delta m(t_f-t)} + \mathrm{e}^{-\Delta m t} \right) \right. \\ &\left. + \frac{Z_2^2}{Z_1^2} \left\langle 2|J|2 \right\rangle \mathrm{e}^{-\Delta m t_f} \right] \end{split}$$

where $Z_j = \langle j | \overline{\mathcal{N}}(0) | 0 \rangle = Z_j^*$, and $| 0 \rangle$, $| 1 \rangle$, and $| 2 \rangle$ are the vacuum, ground, and first excited state respectively, where Δm is the energy difference between the latter of these two states.

Taking the ratio we get

$$R(t_f, t, 0) = \frac{C_{3pt}(t_f, t, 0)}{C_{2pt}(t_f, 0)} \sim A + B(e^{-\Delta m(t_f - t)} + e^{-\Delta mt}) + Ke^{-\Delta mt_f}$$

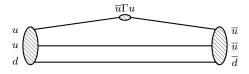
One can also use the summation method.

$$\sum_{t=c}^{t_f-c} R(t_f, t, 0) \sim A(t_f - 2c + 1) + K(t_f - 2c + 1)e^{-\Delta m t_f} + \frac{2B}{1 - e^{\Delta m}} \left(e^{\Delta m(c - t_f)} - e^{\Delta m(1 - c)} \right)$$

We also perform linear fits (K = B = 0).

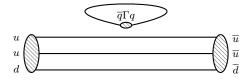
A dense spectrum of excited (multi-particle) states is expected as m_{π} is reduced towards the physical point and the spatial extent is increased to maintain $Lm_{\pi} \geq 4$.

We also investigate two excited state fits, fixing one state using a prior to the smallest of $N(-\vec{p})\pi(\vec{p})$ or $N(0)\pi(0)\pi(0)$.



Connected Quark Line Diagram

- Sequential Source Method and (on some ensembles) Coherent Sink Method [LHPC Collab: arXiv:1001.3620].
- Typically 4 source-sink separations (typically 10 measurements) 0.7 fm (1), 0.9 fm (2), 1.0 fm (3), 1.2 fm (4).
- Wuppertal Smearing for the source and sink to improve overlap with the ground state.
 - ▶ Quark rms radius between 0.6 (at 420 MeV) and 0.85 fm (at physical pion mass).



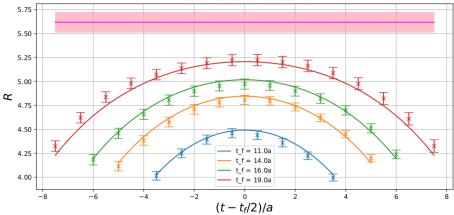
Disconnected Quark Line Diagram

- Stochastic Loop Estimation
 - Truncated Solver Method [G. Bali et. al.: arXiv:0910.3970], Hopping Parameter Expansion [C. Thron et. al.: arXiv:hep-lat/9707001], Time Partitioning [S. Bernardson et. al. 1993].
- Solvers
 - IDFLS [M. Lüscher et. al.: arxiv:0710.5417] or DD-αAMG[A. Frommer et. al.: arxiv:1303.1377].
- Typically 20 measurements of the disconnected three-point function.

Fit to connected C_{3pt}/C_{2pt} for g_S^u

Preliminary Results

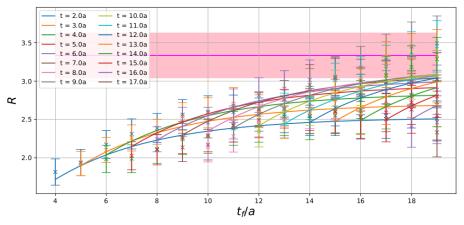
5.619+-0.105 chi2dof: 0.916



The connected and disconnected contributions for several charges are fitted simultaneously. The fit above is to ensemble N202; $V = (48^3, 128) \rightarrow (3.08^3, 8.22)$ fm; $m_{\pi} = 411$ MeV; $\beta = 3.55$; a = 0.0642 fm.

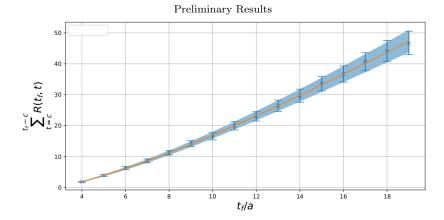
Disconnected Contribution to g_S^u

Preliminary Results



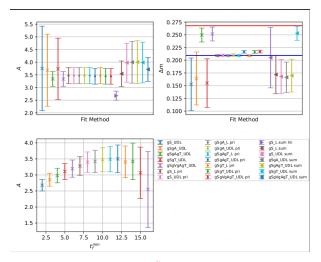
Simultaneous fit including the connected contribution (for several charges). The fit above is to ensemble N202; $V = (48^3, 128) \rightarrow (3.08^3, 8.22)$ fm; $m_{\pi} = 411$ MeV; $\beta = 3.55$; a = 0.0642 fm.

Summation Method for Disconnected Contribution to g_S^u



Simultaneous fit including the connected contribution (for several charges). The fit above is to ensemble N202; $V = (48^3, 128) \rightarrow (3.08^3, 8.22)$ fm; $m_{\pi} = 411$ MeV; $\beta = 3.55$; a = 0.0642 fm.

Simultaneous Fits to Multiple Charges



Top left: bare matrix element for disconnected g_S^u against fitting method. Top right: excited state mass gap against fitting method, with $N\pi$ (blue line) and $N\pi\pi$ (red line) masses indicated. Bottom left: fit range variation for linear summation method. For smaller pion masses there is some variation with the fit range and charges included.

Renormalisation and $\mathcal{O}(a)$ improvement for isovector charges:

$$g_X = Z_X (1 + am_l b_X + 3a\overline{m}\tilde{b}_X) g_X^{\text{bare}}$$

Due to chiral symmetry breaking, non-singlet charge combinations renormalise with $Z_{\mathcal{O}}^{ns}$ and singlet charge combinations with $Z_{\mathcal{O}}^{s}$, with the ratio

$$r_{\mathcal{O}} = Z_{\mathcal{O}}^s / Z_{\mathcal{O}}^{ns} = 1 + \mathcal{O}(\alpha_s^n), \qquad n \ge 2$$

The deviation from 1 is small for the axial and tensor, but significant for the scalar.

The results that are presented for the isosinglet axial and tensor only have the Z^{ns} employed.

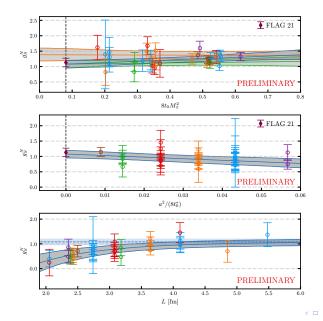
Consider the following fit form for the axial, tensor and scalar charges:

$$f(\dots) = c_0 + c_\pi m_\pi^2 + c_K m_K^2 + c_a a^2 + c_a a^2 m_\pi^2 + c_{aK} a^2 m_K^2 + c_{aK} a^2 m_K^2 + c_{v\pi} \frac{m_\pi^2}{\sqrt{Lm_\pi}} e^{-Lm_\pi} + c_{vK} \frac{m_K^2}{\sqrt{Lm_K}} e^{-Lm_K} + c_{v\eta} \frac{m_\eta^2}{\sqrt{Lm_\eta}} e^{-Lm_\eta}$$

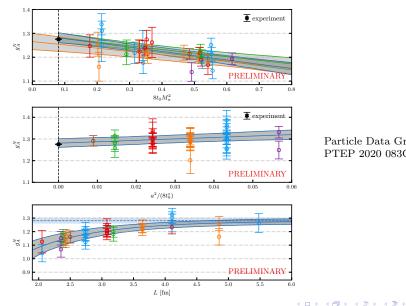
With current set of ensembles, can only resolve c_0 , c_{π} , c_K , c_a and $c_{v\pi}$.

For the vector we use

$$f(\ldots) = c_0 + c_a a^2 + c_{a\pi} a^2 m_{\pi}^2 + c_{aK} a^2 m_K^2 + c_{a3} a^3$$



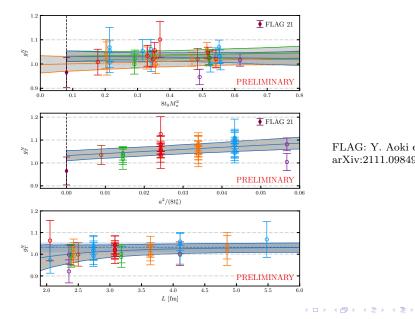
FLAG: Y. Aoki et. al.: arXiv:2111.09849



Particle Data Group: PTEP 2020 083C01

э

Extrapolation of Isovector Charges - g_T

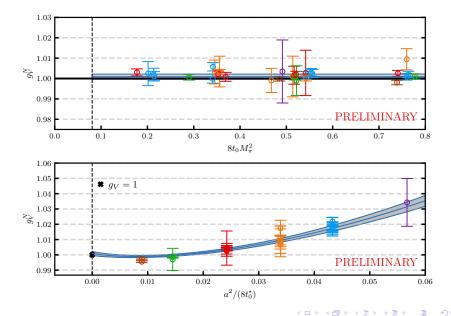


FLAG: Y. Aoki et. al.: arXiv:2111.09849

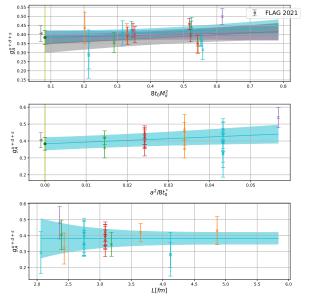
18/22

э

Extrapolation of Isovector Charges - g_V



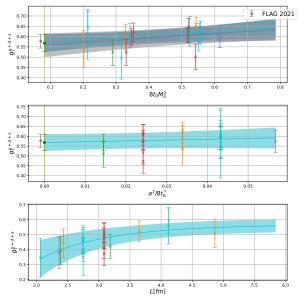
Extrapolation of Isosinglet Charges - g_A^{u+d+s} (Preliminary)



FLAG: Y. Aoki et. al.: arXiv:2111.09849

・ロト ・四ト ・ミト ・ミト ・ヨー うへぐ

Extrapolation of Isosinglet Charges - $g_T^{u+d+s} \ (\mbox{Preliminary})$



FLAG: Y. Aoki et. al.: arXiv:2111.09849

・ロト ・四ト ・ミト ・ミト ・ヨー うへぐ

- Add more ensembles, especially for the extrapolations of the isosinglets.
- Take systematics of multi-charge fits into account (including one and two excited state fits).
- Take the mixing of flavours under renormalisation into account.
- Perform extrapolations for sigma terms.
- See also the talk by Pia Leonie Jones Petrak on "Sigma terms of the baryon octet in $N_f = 2 + 1$ QCD with Wilson quarks" today at 18:10.