Hadronic Parity Violation from Twisted Mass Lattice QCD

Nikolas M. Schlage

in cooperation with

Marcus Petschlies, Aniket Sen, Carsten Urbach

HISKP, University of Bonn

The 39th International Symposium on Lattice Field Theory

August 12, 2022

Why Hadronic Parity Violation (PV) Studies?

- Hadronic PV processes in low energy regime poorly understood yet
- Suggestion [Desplanques et al. 1980]:

Hadronic PV processes describable by one-meson exchange

• Test of this weak meson exchange model

Determination of parity-violating pion-nucleon coupling h_{π}^1

- \rightarrow **Experiment:** NPDGamma (2018)
- $\rightarrow 1^{st}$ Lattice simulation: Wasem (2012)

Methods: h_{π}^1 from *PV* Lagrangian

Effective PV Lagrangian for long-range single π contribution [Desplanques et al. 1980]

$$\mathcal{L}_{PV}^w = -\frac{h_\pi^1}{\sqrt{2}}\,\bar{N}\,(\vec{\tau}\times\vec{\pi})_3\,N+\dots$$

P-odd πN coupling

$$h_{\pi}^{1} = -rac{i}{2m_{N}} \lim_{p_{\pi} o 0} \langle n \, \pi^{+} | \mathcal{L}_{PV}^{w} | p
angle$$

Methods: h_{π}^1 from PV Lagrangian

Matrix elements:
$$h_{\pi}^{1} \propto^{p_{\pi} \to 0} \langle n \pi^{+} | \mathcal{L}_{PV}^{w} | p \rangle$$

 $\Delta S = 0, \ \Delta I = 1$ channel [Kaplan, Savage 1993]

$$\mathcal{L}_{PV}^{w} = -\frac{G_F}{\sqrt{2}} \frac{\sin^2 \theta_W}{3} \left(\sum_{i=1}^3 C_i^{(1)} \, \theta_i^{(\ell)} + \sum_{i=1}^4 S_i^{(1)} \, \theta_i^{(s)} \right)$$

 $\theta^{(\ell)}, \theta^{(s)} \cong$ four quark interpolators (only u, d, s) $C^{(1)}(\Lambda_{\chi}), S^{(1)}(\Lambda_{\chi}) \cong$ Wilson coefficients

 \mathcal{L}_{PC}^{w} approach [Wasem, 2012] \rightarrow difficulties

Methods: h_{π}^1 from *PC* Lagrangian

New approach: partially-conserved axial current relation (PCAC)

Construct effective *PC* Lagrangian [Feng, Guo, Seng 2018]

$$\mathcal{L}_{PC}^{w} = -\frac{G_F}{\sqrt{2}} \frac{\sin^2 \theta_W}{3} \sum_i \left(C_i^{(1)} \,\theta_i^{(\ell)\prime} + S_i^{(1)} \,\theta_i^{(s)\prime} \right)$$

$$\pi N$$
 coupling [Feng, Guo, Seng 2018] $h_{\pi}^1 pprox -rac{(\delta m_N)_{4q}}{\sqrt{2}\,F_{\pi}}$

Induced neutron-proton mass shift $(\delta m_N)_{4q} = (m_n - m_p)_{4q} = \pm \frac{\langle p/n | \mathcal{L}_{PC}^w | p/n \rangle}{m_N}$

Methods: h_{π}^1 from *PC* Lagrangian

Quark bilinears $O_j^{2q} = \bar{q} \Gamma_j q$

current type j	S	P	V	A	T
Γ_j	1	γ_5	γ_{μ}	$\gamma_{\mu}\gamma_{5}$	$rac{1}{2}[\gamma_{\mu}, \gamma_{ u}]$

Four-quark interpolators: express all $\theta_i^{(\ell)'}$ in terms of $O_1^{(\ell)} = \bar{q}_a \,\mathbbm{1} \otimes \mathbbm{1} \, q_a \, \bar{q}_b \,\mathbbm{1} \otimes \tau_3 \, q_b, \quad O_2^{(\ell)} = \bar{q}_a \, \gamma_5 \otimes \mathbbm{1} \, q_a \, \bar{q}_b \, \gamma_5 \otimes \tau_3 \, q_b$ $O_3^{(\ell)} = \bar{q}_a \, \gamma_\mu \otimes \mathbbm{1} \, q_a \, \bar{q}_b \, \gamma_\mu \otimes \tau_3 \, q_b, \quad O_4^{(\ell)} = \bar{q}_a \, \gamma_\mu \, \gamma_5 \otimes \mathbbm{1} \, q_a \, \bar{q}_b \, \gamma_\mu \, \gamma_5 \otimes \tau_3 \, q_b$

strange quark sector: $\theta_i^{(s)'}$ analog

Methods: Quark flow diagrams

Inserting 4-quark operators makes 3pt correlator decompose into 3 diagram types:

- Nucleon interpolators at **source** of form $\bar{u}_a \Gamma_i \bar{d}_b^T \bar{u}_c$
- Nucleon interpolators at **sink** of form $u_a^T \Gamma_f d_b u_c$
- 4-quark operators at insertion point of form $\bar{q}(t_c, \vec{x}_c) \Gamma_{c_1} q(t_c, \vec{x}_c) \bar{q}(t_c, \vec{x}_c) \Gamma_{c_2} q(t_c, \vec{x}_c)$

Methods: Feynman-Hellmann Theorem (FHT)

FHT:

- Weak interaction as perturbation $S \to S_{LQCD} + \lambda \sum_{x} \mathcal{L}^w_{PC,\lambda}(x)$
- Relates matrix elements & energy spectrum variations [Bouchard et al. 2017]:

$$\left\langle N \left| \mathcal{L}_{PC,\lambda}^{w} \right| N \right\rangle = \frac{\partial m_N}{\partial \lambda}$$

Recap: Parity-odd $N\pi$ coupling $h_{\pi}^1 \propto \langle N \, | \, \mathcal{L}_{PC}^w \, | \, N
angle$

Methods: Feynman-Hellmann Theorem (FHT)

Origin of FHT ratio: symmetrized effective mass

FHT ratio

$$R(t,\tau) = \frac{1}{\tau} \frac{z}{\sqrt{z^2 - 1}} \left[\frac{C^{3\text{pt}}(t+\tau) + C^{3\text{pt}}(t-\tau)}{C^{2\text{pt}}(t+\tau) + C^{2\text{pt}}(t-\tau)} - \frac{C^{3\text{pt}}(t)}{C^{2\text{pt}}(t)} \right]$$

$$z \coloneqq \frac{C^{2\mathsf{pt}}(t+\tau) + C^{2\mathsf{pt}}(t-\tau)}{2C^{2\mathsf{pt}}(t)}, \qquad \text{off-set } \tau$$

Target matrix elements: $R_{k,X}^{(j)}(t,\tau) \xrightarrow{t \to \infty} \frac{\langle N | \theta_{k,X}^{(j)'} | N \rangle}{2m_N} \quad \forall \tau \ge 1$

Numerical simulation: Gauge field ensemble

• $N_f = 2 + 1 + 1$ gauge field ensemble cA211.30.32 (Extended Twisted Mass Collaboration)

$L^3 \times T$	$a \; [fm]$	L [fm]	$m_{\pi} \; [{\rm MeV}]$	$m_{\pi}L$	$m_N \; [{\rm MeV}]$
$32^3 \times 64$	0.097	3.1	261.1(1.1)	4.01	1028(4)

• # gauge configurations = 1262

diagram	# stochastic samples	# source coordinates
B, D	1	8
W	8	2

• Smearing techniques

- gauge field: APE
- fermion field: Wuppertal

Results: 3pt Correlation functions (cfs)

cfs for light 4-quark operators

cfs for strange 4-quark operators

PRELIMINARY Results: Matrix elements

k	$\frac{\left\langle N \mid \theta_{B+D,k}^{(\ell)\prime} \mid N \right\rangle}{2m_N}$	$\chi^2/{ m ndof}$	p-value	$\frac{\left\langle N \middle \left. \theta_{B/D,k}^{(s)\prime} \right N \right\rangle}{2m_N}$	$\chi^2/{ m ndof}$	p-value
1	1.302(93)	0.69	0.56	$0.002(7) \times 10^{-2}$	0.95	0.45
2	3.911(279)	0.69	0.56	$-1.115(142) \times 10^{-2}$	0.75	0.56
3	-1.316(94)	0.70	0.55	$0.186(16) \times 10^{-2}$	0.79	0.50
4		—		$0.187(17) \times 10^{-2}$	0.81	0.56

$$\begin{array}{c|c} k & \frac{\left\langle N \middle| \, \theta_{W,k}^{(\ell)'} \middle| N \right\rangle}{2m_N} & \chi^2 / \mathsf{ndof} & p\text{-value} \\ \\ 1 & 2.13(14) \times 10^{-3} & 0.55 & 0.58 \\ 2 & 1.40(14) \times 10^{-2} & 0.86 & 0.49 \\ 3 & -2.11(17) \times 10^{-3} & 0.88 & 0.48 \end{array}$$

 $\mathbf{1^{st}}$ LQCD estimates of matrix elements with $\theta_k^{(\ell/s)\prime}$ for B, D

PRELIMINARY Results: Combined FHT ratios for B

t/a

PRELIMINARY Results: Combined FHT ratios for D

t/a

Constant fit results					
τ	$\mathcal{M}_{tot,D}$	$\chi^2/{ m ndof}$	p-value		
2	3.64(56)	0.54	0.58		
3	3.82(37)	0.29	0.75		
4	3.92(29)	0.50	0.61		
5	3.78(32)	0.44	0.65		
6	3.93(28)	0.70	0.55		

13

PRELIMINARY Results: Combined FHT ratios for W

t/a

PRELIMINARY Results: h_{π}^1 (only W) from matrix elements

Constant fit results						
τ	$h_{\pi}^{1}/10^{-7}$	$\chi^2/{ m ndof}$	p-value			
2	2.89(42)	0.33	0.72			
3	2.72(31)	0.55	0.70			
4	2.56(27)	0.50	0.61			
5	2.42(22)	0.86	0.42			
6	2.31(18)	0.98	0.40			

$$h_{\pi}^{1}(\text{only }W) \approx \left(\frac{G_{F} \sin^{2}(\theta_{W})}{3 \, a \, F_{\pi}}\right) \, \left[C_{1}^{(1)} \, R_{1,W}^{(\ell)} + C_{2}^{(1)} \, R_{2,W}^{(\ell)} + C_{3}^{(1)} \, R_{3,W}^{(\ell)}\right] \qquad \forall \tau \geq 1$$

Comparison

group (year)	method	only W	R*	$m_{\pi}/{ m MeV}$	$h_{\pi}^1/10^{-7}$
Page et al. (1986)	experiment	_	_	140	$0.4^{+1.4}_{-0.4}$
NPDGamma (2018)	experiment	_	-	140	2.6(1.2)
Wasem (2012)	\mathcal{L}_{PV} , "direct"	\checkmark	×	390	1.10(51)
our work (2022) \mathcal{L}_{PC} , SPT + FHT		\checkmark	\times	260	2.31(18)

* R $\ \widehat{=}\$ renormalization

Main limitations (our work): No renormalization yet, only W

Achieved:

- Add strange quark sector \checkmark
- Non-zero signal for all combined FHT ratios \checkmark
- Best fit matrix elements have $\lesssim 10\%$ statistical uncertainties \checkmark
- Get estimate for h^1_{π} using only W

Next Steps:

- Renormalization
- Towards physical pion mass & continuum limit $(a \rightarrow 0)$ & infinite volume $(L \rightarrow \infty)$

Thank you for your attention

Four quark operators with quark isospin doublet $q = (u d)^T$:

$$\theta_1^{(\ell)\prime} = \bar{q}_a \gamma_\mu \mathbb{1} q_a \bar{q}_b \gamma^\mu \tau^3 q_b, \quad \theta_2^{(\ell)\prime} = \bar{q}_a \gamma_\mu \mathbb{1} q_b \bar{q}_b \gamma^\mu \tau^3 q_a, \quad \theta_3^{(\ell)\prime} = \bar{q}_a \gamma_\mu \gamma_5 \mathbb{1} q_a \bar{q}_b \gamma^\mu \gamma_5 \tau^3 q_b$$

$$\begin{aligned} \theta_1^{(s)\prime} &= \bar{s}_a \,\gamma_\mu \,s_a \,\bar{q}_b \,\gamma^\mu \,\tau^3 \,q_b, \quad \theta_3^{(s)\prime} &= \bar{s}_a \,\gamma_\mu \,\gamma_5 \,s_a \,\bar{q}_b \,\gamma^\mu \,\gamma_5 \,\tau^3 \,q_b, \\ \theta_2^{(s)\prime} &= \bar{s}_a \,\gamma_\mu \,s_b \,\bar{q}_b \,\gamma^\mu \,\tau^3 \,q_a, \quad \theta_4^{(s)\prime} &= \bar{s}_a \,\gamma_\mu \,\gamma_5 \,s_b \,\bar{q}_b \,\gamma^\mu \,\gamma_5 \,\tau^3 \,q_a \end{aligned}$$

Backup: Correlators

• Nucleon-nucleon 2pt correlator: $C^{2pt}(t) = \lim_{\lambda \to 0} C_{\lambda}(t)$ where $C_{\lambda}(t) = \langle \lambda | N(t) \overline{N}(0) | \lambda \rangle$

• 3pt correlator:
$$\partial_{\lambda}C_{\lambda}(t)|_{\lambda=0} = -\sum_{x_c} \langle N|\mathcal{L}_{PC}^w(x_c)|\bar{N}\rangle_{\lambda=0} \propto \sum_{t_c} C^{3\mathsf{pt}}(t,t_c)$$

 $x_c = (t_c, \vec{x})$

Effective nucleon state mass

$$C_{\lambda}(t) \xrightarrow{t \to \infty} \frac{1}{2 m_N} \langle \lambda | N | p \rangle \langle p | \bar{N} | \lambda \rangle \ e^{-t m_N(\lambda)} \quad \curvearrowright \quad m_{\text{eff}}(t,\tau;\lambda) = \frac{\log(C_{\lambda}(t)/C_{\lambda}(t+\tau))}{\tau}$$
$$\xrightarrow{t \to \infty} m_N(t,\tau;\lambda)$$

Leading order perturbation theory, large t limit $\frac{\partial m_N(t,\tau;\lambda)}{\partial \lambda} \bigg|_{\lambda=0} = \frac{1}{\tau} \left(\frac{\partial_{\lambda} C_{\lambda}(t)}{C^{2\mathsf{pt}}(t)} - \frac{\partial_{\lambda} C_{\lambda}(t+\tau)}{C^{2\mathsf{pt}}(t+\tau)} \right)_{\lambda=0}$

Determine πN coupling: $\langle N | \mathcal{L}_{PC}^w | N \rangle \stackrel{\mathsf{FHT}}{=} \partial_{\lambda} m_N |_{\lambda=0} \longrightarrow h_{\pi}^1 \propto \langle N | \mathcal{L}_{PC}^w | N \rangle$

Backup: Detailed FHT ratio

FHT ratio

$$\begin{aligned} R_{k,X}^{(j)}(t,\tau) &= \frac{1}{\tau} \frac{z^{(j)}}{\sqrt{(z^{(j)})^2 - 1}} \left[\frac{C_{k,X}^{3\mathsf{pt}(j)}(t+\tau) + C_{k,X}^{3\mathsf{pt}(j)}(t-\tau)}{C^{2\mathsf{pt}(j)}(t+\tau) + C^{2\mathsf{pt}(j)}(t-\tau)} - \frac{C_{k,X}^{3\mathsf{pt}(j)}(t)}{C^{2\mathsf{pt}(j)}(t)} \right] \\ z^{(j)} &\coloneqq \frac{C^{2\mathsf{pt}(j)}(t+\tau) + C^{2\mathsf{pt}(j)}(t-\tau)}{2C^{2\mathsf{pt}(j)}(t)} \\ \text{off-set } \tau, \qquad \text{operator } k = 1, 2, 3, \dots, \qquad X = B, D, W, \qquad j = \ell, s \end{aligned}$$

Target matrix elements:
$$R_{k,X}^{(j)}(t,\tau) \xrightarrow{t \to \infty} \frac{\langle N | \theta_{k,X}^{(j)\prime} | N \rangle}{2m_N} \quad \forall \tau \ge 1$$

Backup: Combined FHT ratios

combine FHT ratios:

$$R_{\text{tot},X}^{(\ell)} = R_{1,X}^{(\ell)} + R_{2,X}^{(\ell)} + R_{3,X}^{(\ell)} \qquad \qquad X = B, \, D, \, W$$

$$R_{\text{tot},D/B}^{(s)} = R_{4/5,D/B}^{(s)} + R_{6/7,D/B}^{(s)}$$

Combined FHT ratio for *B*, *D*

$$R_{\mathsf{tot},X} = R_{\mathsf{tot},X}^{(\ell)} + R_{\mathsf{tot},X}^{(s)} \qquad X = B, D$$

No Wilson coefficients!