Log-enhanced discretisation errors in integrated correlation functions

Leonardo Chimirri, Nikolai Husung, Rainer Sommer
John von Neumann Institute for Computing, DESY
\&
Humboldt University, Berlin

Bonn, Lattice 2022, August 8-13

Integrated correlation functions

- Heavy quark moments for the determination of α_{S}, in particular: time slice correlator:

$$
G\left(x_{0}, M\right)=\int \mathrm{d}^{3} \mathbf{x}\left\langle P^{\mathrm{RGI}}(x) \bar{P}^{\mathrm{RGI}}(0)\right\rangle, \quad P^{\mathrm{RGI}}=Z^{\mathrm{RGI}} \bar{c} \gamma_{5} c^{\prime}
$$

4th moment:

$$
M_{4}(M)=\int_{-\infty}^{\infty} \mathrm{d} t t^{4} G(t, M) \quad M=M_{c}=M_{c}^{\prime}=\mathrm{RGI} \text { mass }
$$

[Bochkharev, DeForcrand]
dimensionless, normalized

$$
R_{4}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0}}=1+\sum_{k=1}^{3} c_{k} \alpha_{\overline{\mathrm{MS}}}^{k}\left(m_{\star}\right)+\text { unknown }
$$

- large mass: perturbative, determine $\alpha_{\overline{\mathrm{MS}}} \rightarrow \Lambda_{\overline{\mathrm{MS}}} \quad$ [HPQCD+Karlsruhe group, ...]

Integrated correlation functions

- but: window problem (large scale needs very small lattice spacing)
- and log-enhanced discretisation errors

$$
\text { from small } t: \quad \int_{0}^{\epsilon} \mathrm{d} t t^{4} G(t, M) \sim \int_{0}^{\epsilon} \mathrm{d} t t\left[\bar{g}^{2}(1 / t)\right]^{\eta} \rightarrow a \sum_{t} \ldots
$$

- Exact same form for $g_{\mu}-2$

Numerical results from

- quenched
- $2 \mathrm{fm} \times 5 \mathrm{fm}$
- open BC (no topology freezing)
- tmQCD at maximal twist + NP clover
- lattice spacings

$$
a=0.01 \mathrm{fm} \times 2^{n / 2}, n=0 \ldots 6: 0.01 \mathrm{fm} \ldots 0.08 \mathrm{fm}
$$

[Husung, Krah, Koren, S. 2018]

The problem

lattice normalized:

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

The problem

lattice normalized:

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

The problem

lattice normalized:

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

The problem

lattice normalized:

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

The problem

lattice normalized:

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

The problem

lattice normalized:

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

Tree level (free theory)

- on the lattice (Symanzik expansion for $t \gg a$)

$$
\begin{aligned}
& G(t, M, a)=a^{3} \sum_{\mathbf{x}}\langle P(x) \bar{P}(0)\rangle=\left[G(t, 0,0)+k_{L} \frac{a^{2}}{t^{5}}\right][1+\mathrm{O}(t M)]+\mathrm{O}\left(\frac{a^{4}}{t^{4}}\right) \\
& M_{4}(M, a)=a \sum_{t} t^{4} G(t, M)
\end{aligned}
$$

Tree level (free theory)

- on the lattice (Symanzik expansion for $t \gg a$)

$$
\begin{aligned}
& G(t, M, a)=a^{3} \sum_{\mathbf{x}}\langle P(x) \bar{P}(0)\rangle=\left[G(t, 0,0)+k_{L} \frac{a^{2}}{t^{5}}\right][1+\mathrm{O}(t M)]+\mathrm{O}\left(\frac{a^{4}}{t^{4}}\right) \\
& M_{4}(M, a)=a \sum_{t} t^{4} G(t, M)
\end{aligned}
$$

- short distance contribution to discretisation errors ΔI with $(w(t)=1 / 2$ at end points (trapezoidal))

$$
\Delta I\left(t_{1}, t_{2}\right)=2 a \sum_{t=t_{1}}^{t_{2}} w(t) t^{4} G(t, M, a)-2 \int_{t_{1}}^{t_{2}} \mathrm{~d} t t^{4} G(t, M, 0), \quad t_{1} M \ll 1, t_{2} M \ll 1
$$

for $t_{2}>t_{1} \gg a:$ (Symanzik expansion) and $t_{1} M \ll 1, t_{2} M \ll 1$.

$$
\Delta I\left(t_{1}, t_{2}\right)=k_{L} a^{2} \int_{t_{1}}^{t_{2}} \mathrm{~d} t t^{-1}+\ldots=k_{L} a^{2} \log \left(t_{2} / t_{1}\right)+\ldots=k_{L} a^{2}\left[\log \left(t_{2} / a\right)-\log \left(t_{1} / a\right)\right]+\ldots
$$

Tree level (free theory)

- on the lattice (Symanzik expansion for $t \gg a$)

$$
\begin{aligned}
& G(t, M, a)=a^{3} \sum_{\mathbf{x}}\langle P(x) \bar{P}(0)\rangle=\left[G(t, 0,0)+k_{L} \frac{a^{2}}{t^{5}}\right][1+\mathrm{O}(t M)]+\mathrm{O}\left(\frac{a^{4}}{t^{4}}\right) \\
& M_{4}(M, a)=a \sum_{t} t^{4} G(t, M)
\end{aligned}
$$

- short distance contribution to discretisation errors ΔI with $(w(t)=1 / 2$ at end points (trapezoidal))

$$
\Delta I\left(t_{1}, t_{2}\right)=2 a \sum_{t=t_{1}}^{t_{2}} w(t) t^{4} G(t, M, a)-2 \int_{t_{1}}^{t_{2}} \mathrm{~d} t t^{4} G(t, M, 0), \quad t_{1} M \ll 1, t_{2} M \ll 1
$$

for $t_{2}>t_{1} \gg a$: (Symanzik expansion) and $t_{1} M \ll 1, t_{2} M \ll 1$.

$$
\Delta I\left(t_{1}, t_{2}\right)=k_{L} a^{2} \int_{t_{1}}^{t_{2}} \mathrm{~d} t t^{-1}+\ldots=k_{L} a^{2} \log \left(t_{2} / t_{1}\right)+\ldots=k_{L} a^{2}\left[\log \left(t_{2} / a\right)-\log \left(t_{1} / a\right)\right]+\ldots
$$

- now $\Delta I(0, t)=\Delta I\left(0, t_{1}\right)+\Delta I\left(t_{1}, t\right)$ does not depend on $t_{1}=>$

$$
\Delta I(0, t)=\Delta I\left(0, t_{1}\right)+\Delta I\left(t_{1}, t\right)=\underbrace{\left[\Delta I\left(0, t_{1}\right)-a^{2} k_{L} \log \left(t_{1} / a\right)\right]}_{=k a^{2}}+k_{L} a^{2} \log (t / a)
$$

Tree level (free theory)

- short distance part: $\quad \Delta I(0, t)=a^{2} k+k_{L} a^{2} \log (t / a)$

Tree level (free theory)

- short distance part: $\quad \Delta I(0, t)=a^{2} k+k_{L} a^{2} \log (t / a)$
- full integral $t \rightarrow 1 / M$

$$
M^{2} M_{4}-\left.M^{2} M_{4}\right|_{a=0}=M^{2} \Delta I(0, \infty)=k M^{2} a^{2}-k_{L} M^{2} a^{2} \log (M a)
$$

Tree level (free theory)

- short distance part: $\quad \Delta I(0, t)=a^{2} k+k_{L} a^{2} \log (t / a)$
- full integral $t \rightarrow 1 / M$

$$
M^{2} M_{4}-\left.M^{2} M_{4}\right|_{a=0}=M^{2} \Delta I(0, \infty)=k M^{2} a^{2}-k_{L} M^{2} a^{2} \log (M a)
$$

- explicit tree-level computation for tmQCD maximal twist

$$
k \text { small, } \quad k_{L}=1
$$

Tree level (free theory)

- short distance part: $\quad \Delta I(0, t)=a^{2} k+k_{L} a^{2} \log (t / a)$
- full integral $t \rightarrow 1 / M$

$$
M^{2} M_{4}-\left.M^{2} M_{4}\right|_{a=0}=M^{2} \Delta I(0, \infty)=k M^{2} a^{2}-k_{L} M^{2} a^{2} \log (M a)
$$

- explicit tree-level computation for tmQCD maximal twist

$$
k \text { small, } \quad k_{L}=1
$$

- just dimensional reasoning

$$
\left[\Delta I\left(0, t_{1}\right)-a^{2} k_{L} \log \left(t_{1} / a\right)\right]=k a^{2}
$$

made it easy to get the general form, also for $g_{\mu}-2$
[the result is not $k_{L} a^{2} \int_{0}^{t} \mathrm{~d} s s^{-1}+\ldots \rightarrow \infty \quad$ [Ce et al, doi.org/10.1007/JHEP 12(2021)215]]

Interacting theory: what changes?

Interacting theory: what changes?

- anomalous dimensions

$$
G(t, 0,0) \sim \frac{1}{t^{3}}\left[\bar{g}^{2}(1 / t)\right]^{-2 \hat{\gamma}_{P}}, \quad \Delta G \sim \frac{a^{d}}{t^{3+d}}\left[\bar{g}^{2}(1 / t)\right]^{-2 \hat{\gamma}_{P}-\hat{\Gamma}_{i}^{(d)}}
$$

with a sum over dimensions $d=\left[\mathcal{O}_{i}^{(d)}\right]-4$ and numbering i of the operators $\mathcal{O}_{i}^{(d)}$ of Symanzik EFT

- dimensional reasoning becomes

$$
\Delta I\left(0, t_{1}\right)+a^{2} F\left(\bar{g}^{2}\left(1 / t_{1}\right)\right)=a^{2} K(a \Lambda)
$$

and all terms of any power a^{n} in the expansion of G contribute to $K(a \Lambda)$
in the free theory we could do $\int_{a}^{t} s^{-1} \mathrm{~d} s$ to get the a dependence
with the AD's this gives an infinite sum over d, i. Seems impossible.

back to the specific problem

- Tree-level normalised

$$
R_{4}^{\text {latnorm }}(M)=\frac{M^{2} M_{4}(M)}{\left.M^{2} M_{4}(M)\right|_{g=0} ^{a M \neq 0}}
$$

- denominator: $M^{2} a^{2} \log (M a)$
- numerator: suppression of short distance behavior by anomalous dimension
- log-effect left over, dominantly from the denominator
- but not dividing by tree-level lattice, yields very large discretisation effects

Solutions

- An integral of the considered type
(correlator diverges like $\sim t^{-k}$ weight function $\sim t^{k-1}$ suppresses the divergence only to $\sim t$)
can't be computed well on the lattice as such
- Solutions
- Compute the function $K(a \Lambda)=\bar{K}\left(g_{0}^{2}\right)$
- Will there be terms $\left(g_{0}^{2}\right)^{\eta}$, which can only be obtained by resumming fixed order PT?
- It seems difficult but maybe with NSPT one can do something.
- Instead: Regulate the short distance part
- Explicit example with full numerical demonstration for α_{S} from heavy quark moment
- Then more general proposal

Regulated $M_{4}(M) \rightarrow \rho\left(M_{1}, M_{2}\right)$

- The problematic short distance region is mass-independent.
$\rightarrow>$ combine two masses to eliminate it.

$$
\begin{aligned}
& \rho\left(M_{1}, M_{2}\right) \propto M_{1}^{2}\left[M_{4}\left(M_{1}\right)-M_{4}\left(M_{2}\right)\right], \quad r=M_{1} / M_{2}>1 . \\
& \rho\left(M_{1}, M_{2}\right)=\frac{2 \pi^{2}}{3} \frac{\bar{M}_{4}\left(M_{1}\right)-r^{2} \bar{M}_{4}\left(M_{2}\right)}{1-r^{2}}, \quad \bar{M}_{4}(M)=M^{2} M_{4}(M)
\end{aligned}
$$

integrand shifted to larger t, short distance suppressed

$$
\rho\left(M_{1}, M_{2}\right) \propto \int_{-\infty}^{\infty} \mathrm{d} t t^{4} \underbrace{\left[G\left(t, M_{1}\right)-G\left(t, M_{2}\right)\right]}_{t^{-3}\left[t^{2}\left(M_{1}^{2}-M_{2}^{2}\right)+\mathrm{O}\left(t^{4}\right)\right]}
$$

- no log-enhancement and generically smaller a-effects
- PT from $R_{4}: \rho\left(M_{1}, M_{2}\right)=1+c_{1} \alpha\left(m_{2 \star}\right)+\ldots$

$$
\text { same } c_{1} \text { as in } R_{4} .
$$

(chosen ren. scale: smaller mass dominates, integrand shifted to larger $t \rightarrow>$ choose M_{2})

Continuum limit for $\rho\left(M_{1}, M_{2}\right)$

- dimensionless variable: $\left.z=M \sqrt{8 t_{0}}\right)$
- best consider $\rho\left(r M_{2}, M_{2}\right)$ with $r=$ fixed
- we choose $r=1.5$ with one exception $r=1.33 \ldots$
- expl. $z_{1}=4.5, z_{2}=3$
fits

$$
\begin{gathered}
\rho=\rho_{0}+\rho_{2} a^{2}\left[2 b_{0} \bar{g}^{2}(1 / a)\right]^{0.273} \\
{\left[+\rho_{4} a^{4}\right]}
\end{gathered}
$$

0.273 from quenched contribution of $\mathrm{d}=6$ SymEFT Lagrangian [N. Husung 2022]

Continuum limit for $\rho\left(M_{1}, M_{2}\right)$

Reconstruct R_{4}

- from $R_{4}^{\mathrm{PT}}\left(M_{\text {ref }}\right)$ at large $M_{\text {ref }}$ computed perturbatively to general M

$$
R_{4}(M)=\left(1-r^{-2}\right) \rho\left(M_{\mathrm{ref}}, M\right)+\underbrace{r^{-2}}_{\frac{M_{2}^{2}}{M_{\mathrm{ref}}^{2}} \ll 1} R_{4}^{\mathrm{PT}}\left(M_{\mathrm{ref}}\right)
$$

- perturbative contribution is power suppressed for large $M_{\text {ref }}$

Directly showing $\Lambda_{\overline{M S}}$

- Nice consistency, but despite tiny lattice spacing not very precise

Compare to $\Lambda_{\overline{M S}}$ from qq-force [yusung, , Keh, wade, s. 2019$]$

- Behavior could be similarly problematic and not visible within the errors.

Conclusions

- $\log (\mathrm{a})$-enhanced discretisation errors are a reality
- for tree-level this is easily proven in the interacting theory the general form is not very restrictive maybe NSPT could help
- it is best to avoid them entirely
- demonstrated by use of $\rho\left(M_{1}, M_{2}\right)$
$\rightarrow>$ then R_{4} can be used to determine α_{s}
$\rightarrow>$ then $\Lambda_{\overline{M S}}$ in agreement with Dalla Brida \& Ramos and with Kitazawa et. al
- general form of avoiding such problems:

$$
\int_{0}^{\infty} \mathrm{d} t F(t)=\int_{0}^{\infty} \mathrm{d} t[1-\chi(t)] F(t)+a \sum_{t=0}^{\infty} \chi(t) F(t), \quad \chi(t) \sim \begin{cases}\mathrm{O}\left(t^{2}\right) & t \Lambda_{\overline{M S}} \ll 1 \\ 1 & t \Lambda_{\overline{M S}} \gg 1\end{cases}
$$

continuum continuum limit
perturbation theory of lattice result
for R_{4} or $g_{\mu}-2$
e.g. $\chi(t)=\frac{\left(M_{\mathrm{cut}} t\right)^{k}}{\left(M_{\mathrm{cut}} t\right)^{k}+1}, M_{\mathrm{cut}} \gg \Lambda_{\overline{M S}}$

Conclusions

- $\log (\mathrm{a})$-enhanced discretisation errors are a reality
- for tree-level this is easily proven in the interacting theory the general form is not very restrictive maybe NSPT could help
- it is best to avoid them entirely
- demonstrated by use of $\rho\left(M_{1}, M_{2}\right)$
$\rightarrow>$ then R_{4} can be used to determine α_{s}
$\rightarrow>$ then $\Lambda_{\overline{M S}}$ in agreement with Dalla Brida \& Ramos and with Kitazawa et. al
- general form of avoiding such problems:

$$
\int_{0}^{\infty} \mathrm{d} t F(t)=\int_{0}^{\infty} \mathrm{d} t[1-\chi(t)] F(t)+a \sum_{t=0}^{\infty} \chi(t) F(t), \quad \chi(t) \sim \begin{cases}\mathrm{O}\left(t^{2}\right) & t \Lambda_{\overline{M S}} \ll 1 \\ 1 & t \Lambda_{\overline{M S}} \gg 1\end{cases}
$$

continuum perturbation theory
continuum limit of lattice result
for R_{4} or $g_{\mu}-2$
e.g. $\chi(t)=\frac{\left(M_{\text {cut }} t\right)^{k}}{\left(M_{\text {cut }}\right)^{k}+1}, M_{\text {cut }} \gg \Lambda_{\overline{M S}}$

Thank you for your attention

