
Leonardo Chimirri, Nikolai Husung, 
Rainer Sommer 

John von Neumann Institute for Computing, DESY  
& 

Humboldt University, Berlin

Bonn, Lattice 2022, August 8 -13

Log-enhanced discretisation errors in 
integrated correlation functions



Rainer Sommer | Lat22 | August 11, 2022Log-enhancement

Integrated correlation functions

‣ Heavy quark moments for the determination of , in particular: 
 
time slice correlator: 
                                       
      
 
4th moment: 
 

        
                                                                                            [Bochkharev, DeForcrand] 
 
dimensionless, normalized  
 

       

‣ large mass: perturbative, determine         [HPQCD+Karlsruhe group, …]

αs

G(x0, M) = ∫ d3x ⟨PRGI(x)PRGI(0)⟩ , PRGI = ZRGIc̄γ5c′ 

M4(M) = ∫
∞

−∞
dt t4 G(t, M) M = Mc = M′ c = RGI mass

R4(M) = M2M4(M)
M2M4(M)

g=0

= 1 +
3

∑
k=1

ck αk
MS(m⋆) + unknown

αMS → ΛMS
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Integrated correlation functions

‣ but: window problem (large scale needs very small lattice spacing)

‣ and log-enhanced discretisation errors  
 
 

from small   

‣ Exact same form for   
 
 
 
 
 
 
 
 
 
 
 

t : ∫
ϵ

0
dt t4 G(t, M) ∼ ∫

ϵ

0
dt t [ḡ2(1/t)]η → a∑

t
…

gμ − 2
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Numerical results from

‣ quenched

‣ 2fm x 5fm

‣ open BC (no topology freezing)

‣ tmQCD at maximal twist + NP clover

‣ lattice spacings    
 
       
 
                                                                      [Husung, Krah, Koren, S. 2018] 
 
 
 
 
 
 
 
 

a = 0.01 fm × 2n/2, n = 0…6 : 0.01 fm … 0.08 fm
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The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0
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Tree level (free theory)

‣ on the lattice (Symanzik expansion for )  
                            

     

   
 
     

t ≫ a

G(t, M, a) = a3 ∑
x

⟨P(x)P(0)⟩ = [G(t,0,0) + kL
a2

t5 ] [1 + O(tM)] + O( a4

t4 )

M4(M, a) = a∑
t

t4 G(t, M )
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Tree level (free theory)

‣ on the lattice (Symanzik expansion for )  
                            

     

   
 
     

t ≫ a

G(t, M, a) = a3 ∑
x

⟨P(x)P(0)⟩ = [G(t,0,0) + kL
a2

t5 ] [1 + O(tM)] + O( a4

t4 )

M4(M, a) = a∑
t

t4 G(t, M )

‣ short distance contribution to discretisation errors  with ( )  
 

     

 
 
for   :  (Symanzik expansion) and  
 

     

ΔI w(t) = 1/2 at end points (trapezoidal)

ΔI(t1, t2) = 2a
t2

∑
t=t1

w(t) t4 G(t, M, a) − 2∫
t2

t1
dt t4 G(t, M, 0) , t1M ≪ 1, t2M ≪ 1 .

t2 > t1 ≫ a t1M ≪ 1, t2M ≪ 1 .

ΔI(t1, t2) = kL a2 ∫
t2

t1
dt t−1+… = kL a2 log(t2/t1) + … = kLa2 [log(t2/a) − log(t1/a)] + …
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Tree level (free theory)

‣ on the lattice (Symanzik expansion for )  
                            

     

   
 
     

t ≫ a

G(t, M, a) = a3 ∑
x

⟨P(x)P(0)⟩ = [G(t,0,0) + kL
a2

t5 ] [1 + O(tM)] + O( a4

t4 )

M4(M, a) = a∑
t

t4 G(t, M )

‣ short distance contribution to discretisation errors  with ( )  
 

     

 
 
for   :  (Symanzik expansion) and  
 

     

ΔI w(t) = 1/2 at end points (trapezoidal)

ΔI(t1, t2) = 2a
t2

∑
t=t1

w(t) t4 G(t, M, a) − 2∫
t2

t1
dt t4 G(t, M, 0) , t1M ≪ 1, t2M ≪ 1 .

t2 > t1 ≫ a t1M ≪ 1, t2M ≪ 1 .

ΔI(t1, t2) = kL a2 ∫
t2

t1
dt t−1+… = kL a2 log(t2/t1) + … = kLa2 [log(t2/a) − log(t1/a)] + …

‣ now   does not depend on  =>  
 
                 

ΔI(0,t) = ΔI(0,t1) + ΔI(t1, t) t1
ΔI(0,t) = ΔI(0,t1) + ΔI(t1, t) = [ΔI(0,t1) − a2kL log(t1/a)]

=ka2

+kLa2 log(t/a)
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Tree level (free theory)

‣ short distance part:       ΔI(0,t) = a2k+kLa2 log(t/a)
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Tree level (free theory)

‣ short distance part:       ΔI(0,t) = a2k+kLa2 log(t/a)

‣ full integral   
 
     

t → 1/M
M2M4 − M2M4 |a=0 = M2ΔI(0,∞) = kM2a2−kLM2a2 log(Ma)
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     k small, kL = 1
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Tree level (free theory)

‣ short distance part:       ΔI(0,t) = a2k+kLa2 log(t/a)

‣ full integral   
 
     

t → 1/M
M2M4 − M2M4 |a=0 = M2ΔI(0,∞) = kM2a2−kLM2a2 log(Ma)

‣ explicit tree-level computation for tmQCD maximal twist 
 
     k small, kL = 1

‣ just dimensional reasoning  
 
                    
 
made it easy to get the general form, also for  
 

[the result is not               [Ce et al, doi.org/10.1007/JHEP12(2021)215 ]] 
 
 

[ΔI(0,t1) − a2kL log(t1/a)] = ka2

gμ − 2

kL a2 ∫
t

0
ds s−1+… → ∞
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Interacting theory: what changes?
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Interacting theory: what changes?

‣ anomalous dimensions  
                            

       
 
   
with a sum over dimensions  and numbering  of the  
 
operators  of Symanzik EFT 

‣ dimensional reasoning becomes  
 
                    
 
and all terms of any power  in the expansion of  contribute to  

‣ in the free theory we could do  to get the  dependence  
 
with the AD’s this gives an infinite sum over . Seems impossible.

G(t,0,0) ∼ 1
t3 [ḡ2(1/t)]−2 ̂γP , ΔG ∼ ad

t3+d [ḡ2(1/t)]−2 ̂γP−Γ̂(d)
i

d = [1(d)
i ] − 4 i

1(d)
i

ΔI(0,t1) + a2F(ḡ2(1/t1)) = a2 K(aΛ)
an G K(aΛ)

∫
t

a
s−1ds a

d, i
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back to the specific problem

‣ Tree-level normalised   
 

                         

‣ denominator:  

‣ numerator: suppression of short distance behavior by anomalous dimension

‣ log-effect left over, dominantly from the denominator

‣ but not dividing by tree-level lattice, yields very large discretisation effects 
                            
 
 
 
 
 
 
   

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0
M2a2 log(Ma)
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Solutions

‣ An integral of the considered type  
   (correlator diverges like  weight function  suppresses the divergence only to  )  

 
can’t be computed well on the lattice as such

‣ Solutions

• Compute the function   
 
- Will there be terms    , which can only be obtained by resumming       
  fixed order PT?  
 
- It seems difficult but maybe with NSPT one can do something.

• Instead: Regulate the short distance part  
 
— Explicit example with full numerical demonstration  
    for   from heavy quark moment  
 
— Then more general proposal  
 

∼ t−k ∼ tk−1 ∼ t

K(aΛ) = K̄(g2
0)

(g2
0)η

αs
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Regulated M4(M) → ρ(M1, M2)
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Regulated M4(M) → ρ(M1, M2)

‣ The problematic short distance region is mass-independent. 
—> combine two masses to eliminate it. 
 
 
          
 
    

          
 
 
integrand shifted to larger t, short distance suppressed  
 
 

          

‣ no log-enhancement and generically smaller a-effects

‣ PT from  :  
 
                                                                                     same  as in .  
 
(chosen ren. scale: smaller mass dominates, integrand shifted to larger t  —> choose ) 

ρ(M1, M2) ∝ M2
1[M4(M1) − M4(M2)] , r = M1/M2 > 1.

ρ(M1, M2) = 2π2

3
M4(M1) − r2M4(M2)

1 − r2 , M4(M) = M2M4(M)

ρ(M1, M2) ∝ ∫
∞

−∞
dt t4 [G(t, M1) − G(t, M2)]

t−3[t2(M2
1−M2

2)+O(t4)]

R4 ρ(M1, M2) = 1 + c1α(m2⋆) + …
c1 R4

M2
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Continuum limit for ρ(M1, M2)

‣ dimensionless variable:  

‣ best consider   with  

‣ we choose  with one exception 

‣ expl.  
 
fits 
 
   
 
            
 
0.273 from quenched  
contribution of d=6  
SymEFT Lagrangian  
[N. Husung 2022] 
 
 
 
 

z = M 8t0)
ρ(rM2, M2) r = fixed

r = 1.5 r = 1.33...
z1 = 4.5, z2 = 3

ρ = ρ0 +ρ2 a2[2b0ḡ2(1/a)]0.273

[ +ρ4a4 ]
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Continuum limit for ρ(M1, M2)
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Reconstruct R4

‣ from  at large  computed perturbatively to general  
 
 

 

 

‣ perturbative contribution is power suppressed for large                             
    
 
 
 
 
 
 
 
 

RPT
4 (Mref) Mref M

R4(M) = (1 − r−2) ρ(Mref, M)+ r−2
⏟

M22
M2ref

≪1

RPT
4 (Mref)

Mref
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‣ Nice consistency, but despite tiny lattice spacing not very precise  
              
 
              

Directly showing ΛMS
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PoS(LATTICE2019)263

Yang Mills short distance potential and perturbation theory Rainer Sommer

Figure 3: Left: Step scaling function compared with PT. Right: Λ-parameters determined at various values
of αqq together with different orders of PT.

found over quite a large range of α at the level of 5-10% in Λ, as seen on the right panel of
fig. 3. For central values we should concentrate on the results using the 4-loop β -function. An
extrapolation of the last few points in α3 appears to agree better with the result of [9] than with [8].
However, the precision achieved is not good enough to make a real distinction.

The fact that the b4L and b4LL terms are as big as the 4-loop contribution to the β -function in
the relevant range of αqq suggests that the limitation of the asymptotic perturbative series is reached
with the 4-loop β -function in most of our range, while 5-loop accuracy may help at the edge of
α ≈ 0.21. With data at α ≈ 0.25 and above, the difference of numbers with 3-loop and 4-loop (or
equivalently 4-loop and 4-loop +b4L,b4LL terms puts a bound on the precision.

On the other hand smaller values of αqq are afflicted with too large errors at present. The main
reason is that our estimate of the a4/r4 uncertainty is too large compared to the very high precision
required to obtain a value of Λ below the 5% level.
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‣ Behavior could be similarly problematic and not visible within the errors.              
 
              

Compare to  from qq-force [Husung, Krah, Nada, S. 2019]ΛMS

α = 0.25
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Conclusions

‣ log(a)-enhanced discretisation errors are a reality

‣ for tree-level this is easily proven  
in the interacting theory the general form is not very restrictive  
maybe NSPT could help

‣ it is best to avoid them entirely 

‣ demonstrated by use of    
—> then  can be used to determine  
—> then  in agreement with Dalla Brida & Ramos  
       and with Kitazawa et. al

‣ general form of avoiding such problems: 
 

    
 
                     
                          continuum             continuum limit          for  or   
                   perturbation theory       of lattice result      
                                                                                   e.g.   

ρ(M1, M2)
R4 αs
ΛMS

∫
∞

0
dtF(t) = ∫

∞

0
dt [1 − χ(t)] F(t) + a

∞

∑
t=0

χ(t) F(t) , χ(t) ∼ {O(t2) tΛMS ≪ 1
1 tΛMS ≫ 1

R4 gμ − 2

χ(t) = (Mcutt)k

(Mcutt)k + 1 , Mcut ≫ ΛMS
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Thank you for your attention


