Radiative corrections to neutron decay: the $\gamma-W$ box diagram using Lattice QCD

Tanmoy Bhattacharya, Rajan Gupta, Emanuele Mereghetti, Santanu Mondal, Jun-Sik Yoo*, Boram Yoon

Lattice 2022
August 10, 2022

Status

Two anomalies (deviations from black line $\Longrightarrow \Delta_{\mathrm{CKM}}=0$):

1. kaon decays and LQCD point to $\sim 2 \sigma$ tension with unitarity
2. including superallowed β decays brings the discrepancy to $\sim 4 \sigma$

Is this a hint of BSM physics?

$\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ are the targets of our calculation

- $\left|V_{u d}\right|$ extracted from β decays of pions, neutrons, and nuclei Current: $\left|V_{u d}\right|^{2}=0.94809(27) \quad$ dominated by $0^{+} \rightarrow 0^{+} \beta$ decays
- $\left|V_{u s}\right|^{2}=0.05040(36)$ from kaon decays $\left(K \rightarrow \pi e \bar{\nu}_{e}, K \rightarrow \mu \bar{\nu}_{\mu}\right)$
- $\left|V_{u b}\right|^{2} \approx(2 \pm 0.4) \times 10^{-5}$ is tiny, no impact on the unitarity test
- The uncertainty in Δ_{CKM} receives comparable contributions from $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$

The calculation: $\gamma-W$ Box Diagram

> Radiative Correction in $\left|V_{u d}\right|$ is dominated by $\gamma-W$ box diagram!

- Δ_{np} given by the product of leptonic, $L^{\mu \nu}$, and hadronic, $T_{\mu \nu}$, parts

$$
\Delta_{\mathrm{np}}=\int_{0}^{+\infty} d Q^{2} \int_{-Q}^{Q} d Q_{0} \frac{1}{Q^{4}} \frac{1}{Q^{2}+m_{W}^{2}} L^{\mu \nu}\left(Q, Q_{0}\right) T_{\mu \nu}^{V A}\left(Q, Q_{0}\right)
$$

- Lattice QCD needed for $T^{\mu \nu}$ in $0.1<Q^{2}<2 \mathrm{GeV}^{2}$

$$
T_{\mu \nu}^{V A}=\frac{1}{2} \int d^{4} x e^{i Q \cdot x}\left\langle N_{f}(p)\right| T\left[J_{\mu}^{e m}(0,0) J_{\nu}^{W, A}(\vec{x}, t)\right]\left|N_{i}(p)\right\rangle
$$

$\gamma-W$ Box Diagram - Contd.

- The uncertainty in the integral over Q^{2} is dominated by $T^{\mu \nu}$, especially in the low $0<Q^{2} \lesssim 2 \mathrm{GeV}^{2}$ regime where QCD gives large corrections
- The best estimates in the literature combine robust theoretical information on the behavior of the integrand at $Q^{2} \sim 0$, where it is determined by the nucleon elastic form factors, and at large $Q^{2} \gtrsim 2 \mathrm{GeV}^{2}$, where operator product expansion and perturbation theory are reliable
- Proposed lattice QCD calculations aim to reduce the uncertainty in the problematic intermediate region, $0.1<Q^{2} \lesssim 2 \mathrm{GeV}^{2}$, which is currently being approximated using models

The proposed calculation will determine the RC in the neutron/pion/kaon decay.

RC to pion decay:

(B)

(A)
(C)

(D)

- Signal does not degrade with source-sink separation \longrightarrow No excited state artifacts
- Much simpler contractions to construct correlation functions
- Future: do kaon and nucleon at same time

Steps in the calculation

- Coulomb gauge fixing
- Wall Source, Sink propagators $(\boldsymbol{p}=0)$ (labeled W)
- Diagram (A): Calculate W from sources and sinks to the current insertion and multiply appropriate Gamma matrix
- Diagram (C): Compute additional propagator S from random points where J_{μ}^{em} sits and shift to $(\mathbf{0}, 0)$. Appropriate contractions of W and S propagators at site (\boldsymbol{x}, t) with insertion of $J_{\nu}^{W, A}$ (or J_{μ}^{em})
- Diagram (D): Calculate the disconnected quark loop L with the insertion of the electromagnetic current shown in the upper part of diagram (D). A stochastic method is used to estimate L at all points of the lattice. Calculate the correlation of loop L with the bottom part of the diagram (D), a 3-point function with insertion of $J_{\nu}^{W, A}$ at point (\boldsymbol{x}, t).
- $\mathcal{M}_{H}\left(Q^{2}\right)$ can be calculated from $H_{\mu \nu}^{V A}=\left\langle\pi^{0}(p)\right| T\left[J_{\mu}^{e m}(0,0) J_{\nu}^{W, A}(\vec{x}, t)\right]\left|\pi^{-}(p)\right\rangle$
- The relevant hadronic tensor is:

$$
T_{\mu \nu}^{V A}=\frac{1}{2} \int d^{4} x e^{i Q \cdot x}\left\langle\pi^{0}(p)\right| T\left[J_{\mu}^{e m}(0,0) J_{\nu}^{W, A}(\vec{x}, t)\right]\left|\pi^{-}(p)\right\rangle
$$

- The spin-independent part of $T_{\mu \nu}^{V A}$ has only one term

$$
T_{\mu \nu}^{V A}=i \epsilon_{\mu \nu \alpha \beta} q^{\alpha} p^{\beta} T_{3}+\ldots
$$

- Knowing T_{3} as a function of Q^{2}, the γW-box correction is given by

$$
\square_{\gamma W}^{V A}=\frac{3 \alpha_{e}}{2 \pi} \int \frac{d Q^{2}}{Q^{2}} \frac{m_{W}^{2}}{m_{W}^{2}+Q^{2}} \mathcal{M}_{H}\left(Q^{2}\right)
$$

Lattice Setup

- Carried out pion γW box measurement on 7 different HISQ-Clover ensembles
- Different lattice spacing can be used for continuum extrapolation ($a \rightarrow 0$)
- Results from various values of m_{π} are interpolated to the physical pion mass

ID	$\mathrm{a}(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	latt. size	$m_{\pi} L$	\# configs.	\# src	\# /src
a06m310	$0.0582(04)$	$319.6(2.2)$	$48^{3} \times 144$	4.52	48	8	256,64
a09m130	$0.0871(06)$	$139.1(1.0)$	$64^{3} \times 96$	3.90	46	8	256,64
a09m310	$0.0888(08)$	$313.0(2.8)$	$32^{3} \times 96$	4.51	60	8	256,64
a12m220	$0.1184(10)$	$227.9(1.9)$	$32^{3} \times 64$	4.38	98	8	256,64
a12m220L	$0.1189(09)$	$227.6(1.7)$	$40^{3} \times 64$	5.49	50	8	256,64
a12m310	$0.1207(11)$	$310.2(2.8)$	$24^{3} \times 64$	4.55	99	8	256,64
a15m310	$0.1510(20)$	$320.6(4.3)$	$16^{3} \times 48$	3.93	80	8	256,64

Table: Ensembles used for RC to the charged pion β decay

$\mathcal{M}_{H}\left(Q^{2}\right)$ using 2-, 3-, 4-pt correlation functions

- $\mathcal{M}_{H}\left(Q^{2}\right)=$ $-\frac{1}{6} \frac{1}{F_{+}^{H}} \frac{\sqrt{Q^{2}}}{m_{H}} \int d^{4} x \omega(t, \vec{x}) \epsilon_{\mu \nu \alpha 0} x_{\alpha} \mathcal{H}_{\mu \nu}^{V A}(t, \vec{x})$
- $\mathcal{H}_{\mu \nu}=\frac{2 m_{\pi} C_{4 p t}}{C_{2 p t}}$
- Combine with prefactor $F_{+}^{\pi}=\frac{C_{3 p t}}{C_{2 p t}}$
- ratio $\mathcal{H}_{\mu \nu} / F_{+}^{\pi}=\frac{2 m_{\pi} C_{4 p t}}{C_{3 p t}}$ has better S2N due to cancellation of correlated fluctuations.

$\mathcal{M}_{H}\left(Q^{2}\right)$ as a function of integration radius

Q^{2}-dependence of $\mathcal{M}_{H}\left(Q^{2}\right)$ for the pion

- $\operatorname{In} Q^{2} \gtrsim 2 \mathrm{GeV}^{2}$ regime, results from coarse (large a) ensembles were farther away from the PT result
- Taking the continuum limit where $\alpha_{s}\left(a^{-1}\right) a \rightarrow 0$, the PT result and continuum extrapolation overlaps in $2 \mathrm{GeV}^{2}<Q^{2}<3 \mathrm{GeV}^{2}$
- The surplus in the low- Q^{2} regime compensates for deficiency in high- Q^{2} for coarse lattice
\rightarrow small a-dependence of the integral

Integrated box contribution below $Q^{2} \leq 2 \mathrm{GeV}^{2}$

Leading a - and m_{π}-dependence (in $\chi \mathrm{PT}$) is expected to be

$$
\begin{align*}
& \left.\square_{\gamma W}^{V A}\right|_{\pi} ^{Q^{2} \leq 2 \mathrm{GeV}^{2}}\left(m_{\pi}, a\right) \\
& \quad \quad=c_{0}+c_{1} m_{\pi}^{2}+c_{2} a \alpha_{s}\left(a^{-1}\right) \tag{1}
\end{align*}
$$

Extrapolated result at physical point

$$
\begin{equation*}
\left.\square_{\gamma W}^{V A}\right|_{\pi} ^{Q^{2} \leq 2 \mathrm{GeV}^{2}}=6.61(27) \times 10^{-4} \tag{2}
\end{equation*}
$$

Mild dependence on a and m_{π}

Integrated box contribution below $Q^{2} \leq 2 \mathrm{GeV}^{2}$

Our lattice result at physical point

$$
\square_{\gamma W}^{V A}{ }_{\pi}^{Q^{2} \leq 2 \mathrm{GeV}^{2}}=0.661(27) \times 10^{-3}
$$

can be combined with pQCD result

$$
\begin{gathered}
\left.\square_{\gamma W}^{V A}\right|_{\pi} ^{Q^{2}>2 \mathrm{GeV}^{2}}=2.159(6)(7) \times 10^{-3} \\
\left.\Rightarrow \quad \square_{\gamma W}^{V A}\right|_{\pi}=2.820(28) \times 10^{-3}
\end{gathered}
$$

[Our Result]

$$
\text { cf.) }\left.\square_{\gamma W}^{V A}\right|_{\pi}=2.830(11)(26) \times 10^{-3}
$$

[Xu Feng, et al., PRL (2020)]

Determination of $\left|V_{u d}\right|$

- $\Gamma_{\pi \ell 3}=\frac{G_{\mu}^{2}\left|V_{u d}\right|^{2} m_{\pi}^{5}\left|f_{+}^{\pi}(0)\right|^{2}}{64 \pi^{3}}(1+\delta) I_{\pi}$
- χ PT result: $\delta=0.0334(10)_{\text {LEC }}(3)_{\mathrm{HO}}$
- $\delta=\frac{\alpha_{e}}{2 \pi}\left[\bar{g}+3 \ln \frac{m_{Z}}{m_{p}}+\ln \frac{m_{Z}}{m_{W}}+\tilde{a}_{g}\right]+\delta_{H O}^{Q E D}+2 \square_{\gamma W}^{V A}$
- Earlier result on lattice: $\delta=0.0332(1)_{\gamma W}(3)_{H O}$ [Xu Feng, et al., PRL (2020)]
- Our preliminary result: $\delta=0.0332(1)_{\gamma W}(3)_{H O}$

Nucleon Box diagram Status

- No diagram B
- S2N is an issue
- Investigate and find cost-effective and good spin projection
- Diagrams share the same Wall (W), point (S) and disconnected loop (L) propagators with the pion calculation
(A)

)
(C)

(D)

Summary

- Reduce uncertainty in radiative correction to neutron decay using LQCD
- Computed electroweak γW-box corrections to the semileptonic pion decay on 7 ensembles and obtained $\square_{\gamma W}=2.811(33) \times 10^{-3}$ (paper in preparation)
- Nucleon box diagrams are under investigation
- Goal: precision results for RC to pion, kaon, neutron decays

Acknowledgement

- We thank MILC collaboration for sharing HISQ lattices.
- The calculations used the CHROMA software suite
- We thank DOE for allocations at NERSC and OLCF
- We thank USQCD collaboration and Institutional Computing at Los Alamos National Laboratory for allocations.
- T. Bhattacharya, R. Gupta, S. Mondal, J. Yoo and B. Yoon were partly supported by the LANL LDRD program.

Appendix

Two ways to probe BSM physics:

Two ways to probe Beyond the Standard Model (BSM) physics:

1. Directly produce new particles in high energy experiments
2. look for tiny deviations from the SM predictions =

Confront precision measurements with accurate predictions of the SM
Improve the theoretical input to test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

- The SM has only one-type of charged-current interactions

$$
\mathcal{L}_{C C}=\frac{g}{2 \sqrt{2}} W_{\mu}^{+} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right)\left(V_{\mathrm{CKM}}\right)_{i j} D_{j}+\text { h.c. }, \quad \begin{gathered}
\bar{U}=(\bar{u}, \bar{c}, \bar{t}) \\
D^{T}=(d, s, b)
\end{gathered}
$$

- Unitarity of V_{CKM} would imply no BSM physics

$$
\Delta_{\mathrm{CKM}} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=0
$$

$\left|V_{u d}\right|^{2}$ from neutron decay: $\delta\left|V_{u d}\right|^{2} \approx(8 \rightarrow 3) \times 10^{-4}$

- $\left|V_{u d}\right|^{2}$ from neutron decay is given by the master formula

$$
\left|V_{u d}\right|^{2}=\left(\frac{G_{\mu}^{2} m_{e}^{5}}{2 \pi^{3}} f\right)^{-1} \frac{1}{\tau_{n}\left(1+3 g_{A}^{2}\right)(1+\mathrm{RC})}=\frac{5099.3(4) \mathrm{s}}{\tau_{n}\left(1+3 g_{A}^{2}\right)(1+\mathrm{RC})}
$$

τ_{n} : free neutron lifetime
g_{A} : axial coupling obtained from the neutron β decay (asymmetry parameter A)
G_{μ} : Fermi constant extracted from muon decays,
$f=1.6887(1)$ is a phase space factor

- Experimental Proposal: $\delta \tau_{n} \approx 0.1 \mathrm{sec}, \delta A / A \approx 0.1 \%$.
- Theory Proposal: reduce uncertainty in RC to the 10% level, ie, by a factor of two

This will test the SM up to scales of 15 TeV , which are inaccessible at the LHC

Radiative correction to β-decay

- The theoretical error in $\left|V_{u d}\right|$, is dominated by the uncertainty in the RC, which is expressed as the sum of three terms

$$
\mathrm{RC}=\frac{\alpha_{\mathrm{em}}}{2 \pi}\left\{\bar{g}\left(E_{m}\right)+4 \ln \frac{m_{Z}}{m_{p}}+\Delta_{\mathrm{np}}\right\}
$$

- The first two terms dominate the RC but have very small uncertainties:
- $\bar{g}\left(E_{m}\right)$, where E_{m} is the electron endpoint energy, arises from the emission of soft photons, integrated over the allowed phase space
- $\ln \left(m_{Z} / m_{p}\right)$ encodes perturbative short-distance $\gamma-Z_{\text {boson }}$ loop effects
- Together they give 0.036 , or about 95% of RC
- $\alpha_{\mathrm{em}} \Delta_{\mathrm{np}} /(2 \pi) \sim 0.002$: This non-perturbative long distance effect is comparatively small, but its estimated uncertainty, $\sim 20 \%$, dominates the theory error budget.

Lattice QCD is the only known controlled method to determine Δ_{np} at the 10% level and to reach $\delta\left|V_{u d}\right|^{2} \leq 3 \times 10^{-4}$

