HVP with C* BOUNDARY CONDITIONS Part I

ROMAN GRUBER, ANIAN ALTHERR

RC* collaboration: Anian Altherr, Lucius Bushnaq, Isabel Campos-Plasencia, Marco Catillo, Alessandro Cotellucci, Madeleine Dale, Roman Gruber, Patrick Fritzsch, Javad Komijani, Jens Luecke, Marina Marinkovic, Sofie Martins, Agostino Patella, Joao Pinto Barros, Nazario Tantalo and Paola Tavella

AUGUST 10, 2022

INTRO / OVERVIEW

INTRO / OVERVIEW

Part I

- Strategy of calculation
- Sources
- Vector masses
- Introduction to C* boundary conditions
- Part II: from Anian Altherr (directly following this talk)
 - Implications of C* boundary conditions
 - HVP in dynamical QCD+QED simulations
 - Outlook
- Other related talks/posters
 - ► Sofie Martins: Finite-Size Effects of the Hadronic Vacuum Polarization Contribution to the Muon (g – 2) with C* Boundary Conditions (talk in this session at 09:40 AM)
 - Jens Lücke: An update on QCD+QED simulations with C* boundary conditions (talk in session "Hadron Spectroscopy and Interactions" on Fri 4:40 PM)
 - Paola Tavella: Strange and charm contribution to the HVP from C* boundary conditions (poster on Tue 8:00 PM)
 - Alessandro Cotellucci: Tuning of QCD+QED simulations with C* boundary conditions (poster on Tue 8:00 PM)

HADRONIC VACUUM POLARIZATION CON-TRIBUTION TO THE MUON G-2

current values of anomalous magnetic moment a_{μ} and leading order hadronic vacuum polarization $a_{\mu}^{\rm HVP}$:

	source	value(total error)	relative error
a_{μ}	exp 1	11 659 206.1(4.1) $ imes$ 10 $^{-10}$	0.54 ppm
a_{μ}	theory ²	11 659 181.0 $(4.3) imes$ 10 $^{-10}$	0.36 ppm
a_{μ}^{HVP}	R-ratio ²	$693.1(4.0) imes 10^{-10}$	0.6%
$a_{\mu}^{ m HVP}$	lattice ²	711.6(18.4) $ imes$ 10 $^{-10}$	2.5%
$a_{\mu}^{\rm HVP}$	lattice ³	$707.5(5.5) imes 10^{-10}$	0.8%

need to include isospin breaking effects: $\frac{m_u-m_d}{\Lambda_{\rm QCD}}\sim$ 0.01, $lpha=\frac{1}{137}\sim$ 0.01

¹Fermilab Muon g - 2 [1, 2] ²Muon g - 2 Theory Initiative [3] ³BMW [4]

- full dynamical simulation of QCD + QED
- Wilson clover fermions (unoptimized c_{SW} term)
- C* boundary conditions in three spatial directions
- periodic boundary conditions in time

Figure: C* boundary conditions

G-2: STRATEGY OF CALCULATION

- time-momentum representation with kernel function $\tilde{K}(t; m_{\mu})$ and current $j_k(t, \vec{x})$.
- conserved-local current
- use single-exponential fit where noise dominates signal

Figure: Hadronic vacuum polarization

$$a_{\mu} \sim \int_{o}^{\infty} \mathrm{d}t \underbrace{\int_{\mathbb{R}^{3}} \mathrm{d}^{3}x \left\langle j_{k}^{ps}(t,\vec{x}) j_{k}^{loc}(o,\vec{o}) \right\rangle}_{G_{k}(t)} \tilde{K}(t;m_{\mu})$$

 m_{μ} is the muon mass, k is a spatial index 1, 2, 3, for details see Bernecker et al. [5] and Della Morte et al. [6]

Ensemble	A400	A360	A380
flavors	3(u/d/s) + 1(c)	1(u) + 2(d/s) + 1(c)	1(u) + 2(d/s) +1(c)
β	3.24	3.24	3.24
α	0.0	0.04063(6)	0.00708(2) pprox 1/137
m_{π} [MeV]	399(3)	359(3)	380
a [fm]	0.05393(24)	0.05054(27)	0.05323(28)
size	32x32x32x64	32x32x32x64	32x32x32x64
#configs	200	181	200

Correlator of interest:

$$\begin{split} G_{k}(x_{o}) &\sim \frac{1}{|\Omega|} \sum_{y \in \Omega} \sum_{\vec{x} \in \Lambda_{3}(\vec{y})} \operatorname{tr}_{CD} \left[\gamma^{5} \gamma_{k} D^{-1} (x_{o} + y_{o}, \vec{x} | y) \gamma^{5} \gamma_{k} D^{-1} (x_{o} + y_{o}, \vec{x} | y)^{\dagger} \right] \\ G_{k}(x_{o}) &\sim e^{-E_{o} x_{o}} \left(1 + \mathcal{O}(e^{-\Delta E x_{o}}) \right) \end{split}$$

where 1 2

- Ω set of source points ($|\Omega| \approx$ 10)
- $\Lambda_3(\vec{y})$ set of spatial lattice points symmetric around \vec{y} ³
- \blacksquare k = 1, 2, 3, spatial Lorentz-indices
- $D^{-1}(x|y)$ inverse Dirac-operator, i.e. propagator from lattice point y to x

¹we define the **effective mass** as $m_{eff} = E_o(=am_{phys})^2 \Delta E$ is the energy difference to the first excited state ³See talk by Sofie Martins

The propagator $D^{-1}(x|y)$ needs inversions of the Dirac operator using source fields located at source point y:

- 1. Point sources
 - a point source η at point $(\mathbf{y}, \beta, \mathbf{b})$ obeys $\eta(\mathbf{x})_{\alpha a} = \delta_{\mathbf{x}\mathbf{y}}\delta_{\alpha\beta}\delta_{ab}$
 - ► 12 inversions per point source *y*
- 2. Spin-diluted stochastic wall sources
 - located at a time-slice y_o
 - diluted in the 4 spin-indices 4 inversions per wall source
 - $(\mathbb{Z}_2 + i\mathbb{Z}_2)$ -noise
 - gives an average over spatial lattice: $\Omega = \Lambda_3$
- 3. Smeared sources
 - \blacktriangleright Give better overlap with ground state \Longrightarrow for mass extraction
 - HVP requires unsmeared sources

Charm: Point sources \leftrightarrow spin-diluted wall sources

Figure: Low-statistics study: Sources for **charm**-contribution ($q_c = 2/3$). $G(x_0)$ is the vector-vector correlator integrated over the spatial lattice. The effective mass m_{eff} is fitted in a certain range, where the correlator *G* exhibits single-exponential behavior.

Up: Point sources \leftrightarrow spin-diluted wall sources

Figure: Low-statistics study: Sources for **up**-contribution ($q_u = 2/3$)

Down/strange: Point sources \leftrightarrow spin-diluted wall sources

Figure: Low-statistics study: Sources for **down/strange**-contribution ($q_{d/s} = -1/3$)

Different measurement setup for different quark flavours:

- heavy quarks —> spin-diluted stochastic wall-sources (semwall)
- light quarks —> point-sources
- mass spectra → smeared sources (see next slide)

Ensemble ($lpha$, $m{m}_{\pi}$)	flavor	#sources	source type	#configs
$\Lambda (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$	u/d/s	10	point	200
A400 (0.0, 399 MeV)	С	30	semwall	200
	u	10	point	181
A360 (0.04, 359 ${ m MeV}$)	d/s	10	point	181
	С	30	semwall	181
	u	10	point	200
A380 ($pprox$ 1/137, 380 ${ m MeV}$)	d/s	10	point	200
	С	30	semwall	200

VECTOR MASSES

- Ground state masses extracted on a subset of configs using smeared sources
 - Gaussian smearing in sink and source quark fields
 - gradient-flow smearing for the gauge fields (preserves unitarity)
- This mass is an input parameter for the HVP determination

ensemble ($lpha$)	quark	$m_{eff}{}^4$
A400 (0.0)	u/d/s	0.278(7)
A260 (0 01)	d/s	0.262(7)
A300 (0.04)	u	0.267(8)
$\Lambda_{2}^{0} (\sim 1/127)$	d/s	0.265(6)
A300 ($\approx 1/13/)$	u	0.266(4)

No mass spectroscopy for the charm

⁴Errors estimated using jackknife procedure, a dedicated study of autocorrelations to follow.

INTRODUCTION TO C* BOUNDARY CONDI-TIONS

Figure: Lattice with periodic boundary conditions

Figure: Lattice with periodic boundary conditions (left), with C* boundary conditions in direction *x*₁ (right)

- **physical lattice:** $x_1 < L_1$
- **mirror lattice:** $L_1 \leq x_1 \leq 2L_1$

Figure: Fermions $\psi(x)$, QCD links $U_{\mu}(x)$, QED photon field $A_{\mu}(x)$.

periodic boundaries on extended lattice, i.e. $\psi(x + 2L_1\hat{1}) = \psi(x)$

- + $A_{\mu}(x + L_1 \hat{x}_1) = -A_{\mu}(x)$ (C-odd) \implies allowed momenta: $\frac{\pi}{L}(2\mathbb{Z} + 1)$, zero modes eliminated by construction \rightarrow no need for quenching zero modes (like in e.g: QED_L).
- + propagation of electrically charged states can be simulated on the lattice from first principles
- + suppressed finite volume QCD effects.⁵
- lattice volume doubled by introducing a mirror lattice (32x32x32x64 \rightarrow 64x32x32x64)
- flavour mixing ightarrow exponentially suppressed by volume 6
- global U(1) broken down to $\mathbb{Z}_2 \to \text{charge conservation is partially violated}$

16

Thank you for listening! Please stay tuned for part II

REFERENCES I

- G. W. Bennett et al. (Muon g-2 Collaboration), "Final report of the E821 muon anomalous magnetic moment measurement at BNL", Phys. Rev. D 73, 072003 (2006),
- B. Abi et al. (Muon g 2 Collaboration), "Measurement of the positive muon anomalous magnetic moment to 0.46 ppm", Phys. Rev. Lett. 126, 141801 (2021),
- [3] G. Colangelo et al., "Prospects for precise predictions of a_{μ} in the Standard Model", arXiv:2203.15810.
- S. Borsanyi et al., "Leading hadronic contribution to the muon magnetic moment from lattice QCD", Nature 2021 593:7857 593, 51–55 (2021), arXiv:2002.12347,
- [5] D. Bernecker and H. B. Meyer, "Vector correlators in lattice qcd: methods and applications", The European Physical Journal A 2011 47:11 47, 1–16 (2011),
- [6] M. Della Morte et al., "The hadronic vacuum polarization contribution to the muon g 2 from lattice QCD", JHEP **2017**, 20 (2017), arXiv:1705.01775,

[7] B. Lucini, A. Patella, A. Ramos, and N. Tantalo, "Charged hadrons in local finite-volume QED+QCD with C* boundary conditions", JHEP **02**, 076 (2016), arXiv:1509.01636.

FLAVOR VIOLATION

Figure: Ξ^-/p mixing: A $u\overline{u}$ pair is created, a $K^- = s\overline{u}$ travels around the torus and becomes $K^+ = \overline{s}u$, a $s\overline{s}$ pair annihilates. Compare Lucini et al. [7].

CHARGE VIOLATION

Figure: An e^+ travels around the torus and becomes e^- . Compare Lucini et al. [7].