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T - mu phase diagram using Quantum/Classical hybrid algorithm

1.Introduction, motivation

2.VQE (a classical-quantum hybrid algorithm)

3.Density matrix, KL-U divergence

4.Beta VQE (VQE for T>0)

5.Results

6.Summary

Akio Tomiya
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Introduction



Lattice QCD

6

Hybrid algorithm = Quantum + “machine learning”

Akio TomiyaSummary of this talk

I investigated T-mu phase diagram using a quantum algorithm & neural network 
(β-VQE, No sign problem) for Schwinger model (toy model of QCD)

AT arXiv: 2205.08860

Fukushima ,  Hatsuda

Rept.Prog.Phys.74:014001,2011
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MCMC is powerful, if mu = 0

Akio TomiyaIntroduction
• Monte-Carlo enables us to evaluate expectation values for “statistical system”, like lattice QCD in imaginary time

Uc ← P(U) =
1
Z

e−S[U]⟨O[U]⟩ =
1

Nconf

Nconf

∑
c

O[Uc] + 𝒪(
1

Nconf
) ∈ ℝ+

• If we turn on the baryon number density μ, Monte-Carlo methods do not work because  becomes complex. 
This is no more probability. (sign problem)


• Operator formalism does not have such problem! But it requires huge memory to store quantum states, which 
cannot be realized even on supercomputer.


• Quantum states should not be realized on classical computer but on quantum computers, as Feynman said.

e−S[U]

Great successes!

Sign problem

arXiv:0906.3599
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Finite T is good for classical machine. Finite mu is good for quantum

Akio TomiyaIntroduction

*https://indico.hiskp.uni-bonn.de/event/40/contributions/484/attachments/358/630/Powers%20Talk%20Final%20Draft%20Updated.pdf

Credit: Connor Powers (U. of Maryland)*

P(U) =
1
Z

e−S[U] det(D[U] + m)2 ∈ ℝ+

Classical machine: Lattice field theory calculations rely on

Quantum machines can realize (any) unitary evolutions (Solovay Kitaev theorem),

U(t) = e−iĤt

- This P cannot be regarded as probability if μ ≠ 0 (sign problem)

We need a method to calculate T>0 and μ≠0 for QCD and for near-term quantum devices!

- No problem for μ≠0 because we can only use unitary gates (operators)

- “Short time evolution” (shallow circuit) is preferred for near-term devices

- (Efficient way of) calculation of non-unitary cases (i.e. Boltzmann weight)?

Since 1980 (M. Creutz)~

B. Chakraborty, AT+ Phys.Rev.D 105 (2022) 9, 094503

and references therein

: unitary
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State preparation, VQE
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Realization of the exact ground state is difficult

Akio TomiyaState preparation, VQE

U(τ) = e−τHU(t) = e−itH Euclid(t → τ)

Minkowski(τ → t)

Minkowski in M^{d+1} Euclid in S^1 x M^d

ρ = U(τ)/Z

t = − iτ

⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]

H : Hamiltonian in QFT
Finite temperature/imaginary timeReal time

Operator formalism

- Typical use of quantum algorithm is real-time simulation (∵ Unitary).

        - Main interest: , where  is the exact ground state

- Difficulty: State preparation* (as ground state extraction in conventional LQCD) 

    ->  Variational ansatz (next)

- Our work uses the operator formalism. No problem for μ > 0

- Variational calculations with thermal state? -> Beta VQE

⟨Ω |O |Ω⟩ |Ω⟩

(This work)

AT+ Phys.Rev.D 105 (2022) and a lot!

* very good summary in a talk by  Alexei Bazavov https://indico.hiskp.uni-bonn.de/event/40/contributions/469/

[Aμ, Eν] = iℏδμν⋯
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Mimic the ground state with a parametrized state

Akio TomiyaState preparation, VQE
• Quantum machine: Exact ground state preparation is hard. In particular, it is difficult on near term devices

• Variational method for a pure state with a short circuit (VQE, variational quantum eigen-solver). 

• Quantum/Classical hybrid algorithm, iterative, variational


• Parametrized unitary circuit (~parametrized wave-function , : a set of parameters) 


• Basically, it mimics the ground state (pure state)
|θ⟩ θ

|0⟩
|0⟩
|0⟩
|0⟩

Uθ hk

⟨H⟩θ = ∑
k

⟨θ |hk |θ⟩
(re) construct

minimize  tuning ⟨H⟩θ θ

 Parameters θ

Expectation value

Quantum

ClassicalVQE: Iterative, variational

|θ⟩

Iteration

<H>

Bounded

• Pros: Cheap. NISQ

• Cons: Systematic error        (opposite to adiabatic ones)
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Thermal … Boltzmann weight is not unitary…

Akio TomiyaState preparation, VQE

U(τ) = e−τHU(t) = e−itH Euclid(t → τ)

Minkowski(τ → t)

Minkowski in M^{d+1} Euclid in S^1 x M^d

ρ = U(τ)/Z

t = − iτ

⟨OO(τ)⟩ = Tr[O(0)O(τ)ρ]

H : Hamiltonian in QFT
Finite temperature/imaginary timeReal time

Operator formalism

(This work)

(Alternative approach TPQ: AT Yuki Nagai APLAT, 2020), P. Connor + Lattice 2022); QITE, A. M. Czajka arXiv: 2112.03944)

[Aμ, Eν] = iℏδμν⋯

AT+ Phys.Rev.D 105 (2022) and a lot!

- Typical use of quantum algorithm is real-time simulation (∵ Unitary).

        - Main interest: , where  is the exact ground state

- Difficulty: State preparation* (as ground state extraction in conventional LQCD) 

    ->  Variational ansatz

- Our work uses the operator formalism. No problem for μ > 0

- But how can we realized thermal “state”? (Next)

⟨Ω |O |Ω⟩ |Ω⟩
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Density matrix, KL-U divergence
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can describe statistical mechanics 

Akio TomiyaDensity matrix

ρpure = |Ψ⟩⟨Ψ |

ρmixed = ∑
i

wi |ψi⟩⟨ψi |

Pure states:

Mixed states:

 represents probability to find a pure state wi ∈ ℝ |ψi⟩

Thermal states (Grand-canonical):

⟨O⟩ = Tr[Oρpure] = ⟨Ψ |O |Ψ⟩

⟨O⟩ = Tr[Oρmixed] = ∑
i

wi⟨ψi |O |ψi⟩

⟨O⟩T,μ = Tr[OρT,μ]ρT,μ =
1
Z

e− 1
T (Ĥ−μN̂)

Thermal-quantum average in general

⟨O⟩ = Tr[Oρ]

States are classically mixed (≠ superposition)

System is purely quantum
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Contain full information of the system, quantum version of probability distributions

Akio TomiyaDensity matrix
Thermal-quantum average in general

General Properties of density matrix ρ

⟨O⟩ = Tr[Oρ]

• It unifies discretion of pure states and mixed states


• Normalized as 

• This can be used to investigate entanglement/thermalization*


• Density matrix  can be regarded as quantum version of probability distribution p(x)


• e.g.)     (Shannon entropy) 

          <—>       (Von-Neumann entropy)


• Distance between two density matrices = quantum relative entropy (next)


Tr[ρ] = 1

ρ

S = − ∫ dx p(x)log p(x)

S = − Tr[ρ log ρ]

*P. Caputa, AT + Physics Letters B 772, 53-57 (and a lot!)
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“Distance” between two density matrices 

Akio TomiyaKL-U divergence

• KL divergence for ρ is Kullback–Leibler Umegaki divergence (Pseudo-distance for ρ)


• Classical version:    (KL divergence)


• Relative entropy, quantifies difference of two distributions (~distance)

• Positive definite, Used in machine learning

• D=0 if and only if p, q are equal


• Quantum version:  (KL-Umegaki divergence ~ distance)


• Positive definite


• D=0 if and only if  are equal


• Kullback–Leibler Umegaki divergence can be used for variational approaches (as the flow models do)

D(p |q) = ∫ dx p(x)log p(x)/q(x)

D(ρ1 |ρ2) = Tr[ρ1 log ρ1/ρ2]

ρ1, ρ2

Ansatz (mdoel) for ρ?
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Beta VQE = VQE for T>0 = VQE + Neural net

Akio TomiyaKL-U divergence

• Variational method for mixed states: Variational method on ρ


•  ,     (parameters for state/distribution)


• ,  and  : Array of binary numbers


• : parametrized pure states, similar to the conventional VQE,  = variational 
parameters in a circuit


• : Classically approximated distribution for a configuration of ,  
Neural network (Generative model, MADE*) is used.  

 = parameters in the neural network


• Neural network = Universal approximator of functions** 
Here, it approximate thermal distribution for fermions (generative model)

ρansatz
Θ = ∑

{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |Uθ Θ = θ ∪ ϕ

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤ xk ∈ {0,1}
Uθ | ⃗x ⟩ θ

pϕ[ ⃗x ] ⃗x

ϕ

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

** references in
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Optimized parameters enables us calculate <O> at T and mu 

Akio TomiyaKL-U divergence

• We approximate  by  by tuning/training 

parameters  with minimizing 


• , if and only if  


• Intuitively:


• Quantum machine stores a state 


• Classical machine makes thermal distribution (neural net, generative model)

ρexact
T,μ =

1
Z

e− 1
T (Ĥ−μN̂) ρansatz

Θ = ∑
{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |Uθ

Θ = θ ∪ ϕ D(ρansatz
Θ |ρ) ≥ 0

⟨O⟩T,μ ≈ Tr[ρΘO] ρΘ ≈ ρ

Uθ | ⃗x ⟩

pϕ[ ⃗x ]

Jin-Guo Liu+ 1902.02663
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Shifted KLU can be used if ln Z is not avilable

Akio TomiyaKL-U divergence
• Variational method for mixed states: Variational method on ρ


•  ,     (parameters)


• ,  and  : (roughly) fermion excitation


• : parametrized pure states, similar to the conventional VQE


• : Classically approximated distribution for a configuration of ,  
Neural network (MADE*) is used.  = parameters


• Minimizing , we get approximated a set of states (= thermal)


• Shifted D (by a constant, minimization is not affected) is used in real applications:


•   

ρansatz
Θ = ∑

{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |Uθ Θ = θ ∪ ϕ

⃗x = (x1, x2, x3, ⋯, xk, ⋯)⊤ xk ∈ {0,1}
Uθ | ⃗x ⟩

pϕ[ ⃗x ] ⃗x
ϕ

D(ρansatz
Θ |ρexact

T,μ )

ℒ(Θ) ≡ D(ρansatz
Θ |ρexact

T,μ ) − ln Z⏟
const

= Tr[ρansatz
Θ ln ρΘ] +

1
T

Tr[ρansatz
Θ (Ĥ − μN̂)]

J. -Guo Liu+ 1902.02663
*M. Germain+ 1502.03509

BUT, in this work, we use exact diagonalization to check the validity of the algorithm and see D
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Results
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Schwinger model at finite mu and T. Code is written in Julia 

Akio TomiyaResults

• Staggered discretization, Jordan-Wigner transformation, and open BC are used

• g = 1, Nx = (4, 6), 8, 10, 1/T = [0.5-20.0], mu= [0-1.4], 4 lattice spacings 1/2a = [0.5-0.35]

• We do not take large volume limit but take continuum limit

• (Practically, Nx>10 cannot be calculated on our numerical resources)

• (My previous work shows data from Nx>12 are essential to take stable large volume limit though)


• Setup for beta VQE:

• Unitary part = SU(4) ansatz

• Classical weight = Masked Auto-Encoder for Distribution Estimation (MADE)


• Training epoch is 500. Sampling = 5000 for classical distribution

• The code is implemented in           . Calculations on Yukawa21 cluster at Kyoto University

•We apply beta-VQE for Schwinger model = QED in 1+1d.

• Observables

• Variational free energy (exact = lower-bound, and variational one)

• (Translationally invariant) Chiral condensate


• Check point: Dependence of variational error on temperature

• Toy model for QCD in 4d (good for testbed). Common features: Confinement, chiral anomaly, topology …

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ] H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψψ +
1
2

Π2]
∂xE = gψ̄γ0ψ

AT. 2205.08860
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Compare the variational energy ~ D. Looks good  

Akio TomiyaResults

β = 1/T

T

μ

1.Mild dependence on μ

2.Hard for T -> 0 (large deviation) as expected

AT. 2205.08860

Vertical axis:

  Deviation of D 

  from the exact one(%)

Horizontal axis:

   Training epoch
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Chiral condensate as a function of T and mu 

Akio TomiyaResults

Nx = 8 Nx = 10

Qualitatively consistent at μ = 0  (*), and results seems reasonable

We use Nx = 10 results for the phase diagram

*(I did not include additive mass shift (Ross Dempsey+ arXiv: 2206.05308).

I thank to Takis Angelides (DESY) and Etsuko Itou (RIKEN) for letting me know this important reference!)

AT arXiv: 2205.08860



Lattice QCD

24

Classical-quantum hybrid algorithm: T>0 and μ>0

Akio TomiyaSummary

• We investigate T-μ phase diagram for Schwinger model. This algorithm works other than this model.


• Continuum extrapolation has been evaluated (w/o mass shift by Ross Dempsey+ arXiv: 2206.05308 )


• The variational approach does not show difficulty for our parameter regime


• Future works: Towards to go large volume, optimization of code, GPU version, tensor network. (noise-free) real 
device!. Finite temperature + finite density + real time?? 
Pure state ansatz? (relation to TPQ/QITE?), scaling? SU(N)?

⟨ψψ⟩T,μ

⟨ψψ⟩0.05,0

AT. 2205.08860

Thanks!
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Akio Tomiya
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state  

Akio TomiyaVQE

• Quantum machine: Exact ground state preparation is hard. In particular, it is difficult on near term devices

• Variational method for a pure state with a short circuit (VQE, variation quantum eigen-solver). 

• Quantum/Classical hybrid algorithm, iterative


• Parametrized unitary circuit (~parametrized state , : a set of parameters) 


• , and  is a short circuit (entanglement + rotations)


• If , , where  is the exact ground state


• Systematic error since  (cannot be exact in practice)

|θ⟩ θ
|θ⟩ = Û(θ)( |0⟩1 |0⟩2 |0⟩3⋯) Û(θ)

⟨θ |H |θ⟩ = 0 |θ⟩ ≈ |Ω⟩ |Ω⟩
|θ⟩ ≠ |Ω⟩

• How about thermal states? Thermal evolution is not unitary

• (TPQ/QITE on a classical emulator is an option but short circuit rep is not known)
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O(0.1)% for T>>0. T ~0 is difficult

Akio TomiyaBeta VQE
Approx Exact

Approx Exact

~1/a

~1/a

1.Mild dependence on μ

2.Hard for T -> 0 (large deviation) as expected
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state 

Akio Tomiyastate preparation

• We approximate  by  

by tuning/training parameters with minimizing 


• , if and only if  


• Quantum machine can store a state 


• Classical machine can sample thermal distribution from (neural net)

ρexact
T,μ =

1
Z

e− 1
T (Ĥ−μN̂) ρansatz

Θ = ∑
{ ⃗x }

pϕ[ ⃗x ] Uθ | ⃗x ⟩⟨ ⃗x |Uθ

D(ρansatz
Θ |ρ)

⟨O⟩T,μ ≈ Tr[ρΘO] ρΘ ≈ ρ

Uθ | ⃗x ⟩

pϕ[ ⃗x ]

Jin-Guo Liu+ 1902.02663
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• Generalization of QED,  is a matrix (Yang-Mills-Uchiyama)

• Action above enables us to calculate followings:

• Tc of Quark-Hadron, Matrix elements of QCD

• Forces between nuclei … etc!

Aμ(x)

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]S = ∫ d4x[ −
1
2

tr FμνFμν + ψ̄(i∂/ + gA/ − m)ψ]
|ψ(t)⟩ = e−iHt |ψ(0)⟩

, 3x3traceless, harmitianAμ(x) ∈ su(3)

: Hamiltonian from S H

⟨𝒪⟩ =
1
Z ∫ 𝒟U𝒟ψ̄𝒟ψe−S𝒪(U)

S[U, ψ, ψ̄] = a4 ∑
n

[−
1
g2

Re tr Uμν + ψ̄(D/ + m)ψ]
Lattice QCD in 4 dimension

Lattice regulation

F. Wegner 1971

K. Wilson 1974

Uμ = eaigAμ

|ψ(t)⟩ = e−Hτ |ψ(0)⟩

Akio Tomiya

• Lattice QCD has same long-distance physics with continuum QCD

• Euclidean signature, statistic physics U(1)A at fin. temp by Yu Zhang, 28 Jul 2021, 05:45(EDT)


QCD + magnetic field by Xiaodang Wang, 28 Jul 2021, 22:00 (EDT)

My related talks

Lattice QCD
state 
state preparation
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Schwinger model
＝2D QED: Solvable at m=0, similar to QCD in 4D.

Akio Tomiya

Schwinger model = QED in 1+1 dimension

Similarities to QCD in 3+1

• Confinement


• Chiral symmetry breaking (different mechanism), gapped even 
m=0


• Topological term can be included as in QCD


• Vacuum decay by external electric field (Schwinger effect)

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ +
gθ
4π

ϵμνFμν]

⟨ψψ⟩ = −
eγg
π3/2

= − g0.16⋯
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Hamiltonian of Schwinger model Akio Tomiya

Schwinger model = QED in 1+1 dimension

• Strategy


1. Derive Hamiltonian with gauge fixing


2. Rewrite gauge field to fermions using Gauss’ law


3. Use Jordan-Wigner transformation → Spin system

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

＝2D QED: Solvable at m=0, similar to QCD in 4D.

Why? next page
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Hamiltonian of Schwinger model Akio Tomiya

Schwinger model = QED in 1+1 dimension

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

Schwinger model in spin language

H =
1

4a ∑
n

[XnXn+1 + YnYn+1] +
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [
n

∑
j=1

(
Zj + (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC, Spin rep.)

• Strategy(1gauge fix, 2Gauss’ law, 3Jordan-Wigner trf)

• Spin representation is necessary to use quantum device 
(Analogous to floating point rep. in classical machine)


• (QCD + QC also requires this strategy)

: Pauli matrix of z on site jZj: Pauli matrix of x on site jXj : Pauli matrix of y on site jYj
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Hamiltonian of Schwinger model Akio Tomiya

Schwinger model = QED in 1+1 dimension

H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψ ψ +
1
2

Π2]
A0 = 0

Π(x) =
∂ℒ

∂ ·A1(x)
= ·A(x) = E(x)

∂xE = gψ̄γ0ψ (Gauss’ law constraint){

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

＝2D QED: Solvable at m=0, similar to QCD in 4D.

This constrains time evolution to be gauge invariant

(skip)
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Lattice Hamiltonian formalism
Hamiltonian on a discrete space

Akio Tomiya

Schwinger model in continuum

−agA1(x) → ϕn

−
1
g

Π(x) → Ln

Ln − Ln−1 = χ†χn −
1
2 (1 − (−1)n)

H = −
i

2a

N−1

∑
n=1

[χ†
n+1e

−iϕnχn − χ†
neiϕnχn+1] + m

N

∑
n=1

(−1)n χ†
n χn +

g2a
2

N−1

∑
n=1

L2
n

∂xE = gψ̄γ0ψGauss’ law

Gauss’ law

Schwinger model on the lattice (staggered fermion)

upper componentof ψ → χeven−site

lower componentof ψ → χodd−site

H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψ ψ +
1
2

Π2]

(skip)



H = −
i

2a

N−1

∑
n=1

[χ†
n+1e

−iϕnχn − χ†
neiϕnχn+1] + m

N

∑
n=1

(−1)n χ†
n χn +

g2a
2

N−1

∑
n=1

L2
n

35

Lattice Schwinger model = spin system
Gauge trf, open bc, Gauss law -> pure fermionic system

Akio Tomiya

χn → Un χn

L0 = ϵ0 ∈ ℝ (open B.C.)

Un =
n−1

∏
j=1

e−iϕj

e−iϕn−1 → Un−1e−iϕn−1U†
n

H = −
i

2a ∑
n

[χ†
n+1χn − χ†

n χn+1] + m∑
n

(−1)n χ†
n χn +

g2a
2 ∑

n [
n

∑
j

(χ†
j χj −

1 − (−1) j

2 ) + ϵ0]
2

Ln − Ln−1 = χ†χn −
1
2 (1 − (−1)n)Gauss’ law

Schwinger model on the lattice (staggered fermion)

{ remnant gauge transformation

Schwinger model on the lattice (staggered fermion, OBC)

, and insert “Gauss’ law”

(skip)
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Lattice Schwinger model
We requires anticommutations to fermions

Akio Tomiya

H = −
i

2a ∑
n

[χ†
n+1χn − χ†

n χn+1] + m∑
n

(−1)n χ†
n χn +

g2a
2 ∑

n [
n

∑
j

(χ†
j χj −

1 − (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC)

System is quantized by assuming the canonical anti-commutation relation

{χ†
j , χk} = iδjk

On the  other hand, Pauli matrices satisfy anti-commutation as well

{σμ, σν} = 2δμν1
Quantum spin-chain case, each site has Pauli matrix, but they are “commute”.
We can absorb difference of statistical property using Jordan Wigner transformation

χn =
Xn − iYn

2 ∏
j<n

(iZj)Jordan-Wigner transformation:
: Pauli matrix of z on site jZj

: Pauli matrix of x on site jXj

: Pauli matrix of y on site jYj

μ, ν = 1,2,3

j, k = site index

We can rewrite the Hamiltonian in terms of spin-chain

This (re)produces correct Fock space.
This guarantees the statistical property

(skip)
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Lattice Schwinger model = spin system
Jordan-Wigner transformation: Fermions ~ Spins

Akio Tomiya

χn =
Xn − iYn

2 ∏
j<n

(iZj)

χ†
n =

Xn + iYn

2 ∏
j<n

(−iZj)

H =
1

4a ∑
n

[XnXn+1 + YnYn+1] +
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [
n

∑
j=1

(
Zj + (−1) j

2 ) + ϵ0]
2

Jordan-Wigner transformation

[Y. Hosotani 9707129]

H = −
i

2a ∑
n

[χ†
n+1χn − χ†

n χn+1] + m∑
n

(−1)n χ†
n χn +

g2a
2 ∑

n [
n

∑
j

(χ†
j χj −

1 − (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC)

{
Schwinger model on the lattice (staggered fermion, OBC, Spin rep.)

: Pauli matrix of z on site jZj

: Pauli matrix of x on site jXj

: Pauli matrix of y on site jYj

(skip)
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SU(4)
Variational ansatz

Akio Tomiya

J. -Guo Liu+ 1902.02663

The general gate consists of 15 single qubit gates and 3 CNOT gates. 

Each two qubit unitary is parametrized by 15 parameters in the rotational gates, which parametrizes the SU(4) group. 


