The chiral phase transition at nonzero imaginary baryon chemical potential for different numbers of quark flavours

Alfredo D'Ambrosio, Owe Philipsen, Reinhold Kaiser

ambrosio@itp.uni-frankfurt.de

Goethe-Universität - Instituts für Theoretische Physik

Bonn, August 9, 2022

- The order of the QCD chiral phase transition has been deeply investigated
- The Columbia Plot summarises the nature of the QCD thermal phase transition for $N_f = 2 + 1$ and zero density

Two plausible scenarios were suggested [1]

[1] R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys.Rev.D29(1984)338.

 A resolution is proposed through the analytic continuation of N_f from integer to continuous parameter in the (am, N_f) plane [1]

• The projection onto any plane of the bare parameters "space" shows compatibility with the presence of a tricritical point for any $N_f \lesssim 6$

[1] R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys.Rev.D29(1984)338.

[2] Cuteri, F., Philipsen, O., Sciarra, A. On the order of the QCD chiral phase transition for different numbers of quark flavours. J. High Energ. Phys. 2021, 141 (2021).

Figure: Figures from [2]

• Simulations for $N_f \in [2,6]$ result in a lattice chiral limit compatible with a tricritical point on the N_{τ}^{-1} axis

• This has implication also on the possible second-order scenario of the Columbia Plot for $N_f \in [2,3]$

[2] Cuteri, F., Philipsen, O., Sciarra, A. On the order of the QCD chiral phase transition for different numbers of quark flavours. J. High Energ. Phys. 2021, 141 (2021).

Figure: Figures from [2]

 Using a nonzero imaginary baryon chemical potential to extend the Columbia Plot

$$\mathcal{Z}(\mu_i) = \mathcal{Z}(-\mu_i)$$
 $\qquad \qquad \mathcal{Z}\left(\frac{\mu_i}{T}\right) = \mathcal{Z}\left(\frac{\mu_i}{T} + i\frac{2\pi k}{3}\right), \ k \in \mathbb{Z} \quad [3]$

Figure: 3D Columbia Plot [4]

[3] A. Roberge, N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD. Nuclear Physics B Volume 275,Issue 4, 734-745 (1986)

Motivation

- ▶ Study the Z_2 critical surface when $\mu_i \neq 0$
- Use N_f as a continuous parameter, as for $\mu_i = 0$
- ▶ Use the tricritical scaling to extrapolate to the chiral limit
- Compare the results with the ones at zero density

Strategy

ullet For a generic observable ${\cal O}$

$$\langle \mathcal{O}
angle = \mathcal{Z}^{-1} \int \mathcal{D} \mathcal{U} \mathcal{D} \psi \mathcal{D} ar{\psi} \mathrm{e}^{-\mathsf{S}_\mathsf{g}} \, \mathrm{e}^{-\mathsf{S}_\mathsf{f}} \, \mathrm{e}^{-\mathsf{S}_{\mu_i}}$$

- Staggered fermions with parameters $\beta = 6/g^2$, N_f , am, $N_\tau = (a(\beta)T)^{-1}$, μ_i
- μ_i is set to a fraction of the RW one $\mu_i \approx 0.8 \frac{\pi\,T}{3}$

Figure: Position of the simulated μ_i for $N_f = 3$

Strategy

- Simulations with our public available CL²QCD code and RHMC algorithm
- ullet For fixed N_f and $N_ au$, the n^{th} standardized moment for a generic ${\cal O}$ is

$$B_n(\beta, am, N_\sigma) = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{\frac{n}{2}}}$$

- $B_3(\beta = \beta_c, am, N_\sigma) = 0$ gives β_c of the phase transition
- $B_4(\beta_c(am), am, N_\sigma)$ of the sampled distribution of $\langle \bar{\psi}\psi \rangle$ necessary to localize the am_c and the order of the lattice chiral phase transition

Strategy

• The universal infinite volume values for B_4 and the critical exponent ν are the following

	Crossover	1^{st} order	3D Ising
B_4	3	1	1.604
ν	-	1/3	0.6301(4)

• On finite volumes the discontinuity in B_4 becomes smooth and for large enough N_σ^3 and $\beta \sim \beta_c$

$$B_4(eta_c, am, N_\sigma) pprox 1.604 + c(am - am_c)N_\sigma^{1/
u}$$

- Simulations for $N_f \in \{3.6, 4.0, 4.5, 5.0\}$
- For any different N_f , $N_{\tau} \in \{4,6,8\}$, with aspect ratios 2,3,4

$$am(N_{\tau}, N_f, \mu_i) \approx \mathcal{B}_1(N_{\tau}, \mu_i)(N_f - N_f^{\mathsf{tricr}})^{5/2} + \mathcal{B}_2(N_{\tau}, \mu_i)(N_f - N_f^{\mathsf{tricr}})^{7/2}$$

Figure: Preliminary results on the (am, N_f) plane

Figure: Comparison between the $\mu_i=0$ and $\mu_i=0.8\frac{\pi T}{3}$ results

$$\beta_c(N_{\tau},N_f(N_{\tau}),am) \approx \beta_{ ext{tricr}}(N_{\tau}) + \mathcal{A}_1(N_{\tau})(am)^{2/5} + \mathcal{A}_2(N_{\tau})(am)^{4/5}$$

Figure: Preliminary results on the (β , am) plane compared to $\mu_i = 0$

$$am(N_{\tau},N_f,\mu_i)^{2/5} \approx \mathcal{A}_1(N_f,\mu_i)(aT-aT_{\mathsf{tricr}}) + \mathcal{A}_2(N_f,\mu_i)(aT-aT_{\mathsf{tricr}})^2$$

Figure: Preliminary results on the (am, aT) plane

Figure: Comparison between the $\mu_i = 0$ and $\mu_i = 0.8 \frac{\pi T}{3}$ results

Conclusions and further steps

- Zero density results show a 2^{nd} order chiral phase transition in the chiral limit for $N_f \in [2,6]$
- The preliminary results for $\mu_i = 0.8 \frac{\pi T}{3}$ suggest a similar trend of the data as for $\mu_i = 0$, in all of the possible planes
- A tricritical scaling is expected in both cases when the extrapolation towards the chiral limit is performed
- Possibly no μ_i -dependence of the order of the chiral phase transition?

Figure: Possible scenario displaying a 2^{nd} order chiral phase transition in the chiral limit independent on μ_i

Thanks you all for your attention!