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Introduction

Most results on µB > 0 rely on extrapolation from µB = 0 or µ2
B ≤ 0

Usually rely on some kind of expansion, e.g. Taylor series in µB

Goal: Quantitatively check the reliability of some extrapolation schemes

Two steps

� Direct results for µB > 0 (reweighting with no overlap problem)

� Reimplement extrapolation schemes with the same setup

Lattice setup

� 2stout Nτ = 8 (tree-level improvement on p takes it close to cont.)

� Aspect ratio LT = 2

Formulas are schematic
µ̂ ≡ µ/T n̂ ≡ n/T 3 p̂ ≡ p/T 4

detMl(ml , µ̂l = µ̂B/3,U)1/2 detMs(ms , µ̂s = 0,U)1/4 → detM(µ̂B)
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Reweighting from µB = 0

Simulate at µB = 0. Use:

∆p̂ ≡ p̂(µ̂B) − p̂(0) =
1

(LT )3
ln ⟨detM(µ̂B)

detM(0)
⟩
µ=0

Two exponential problems:

� sign problem: fluctuating phases of detM(µ̂B)

detM(0)

→ bad signal-to-noise ratio

� overlap problem: heavy tail of the distribution of detM(µ̂B)

detM(0)

→ unknown systematic error (not reliable)

The numerical evidence suggests that the main bottleneck is the overlap

problem, and not the sign problem.

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102 (2020) 3, 034503 [2003.04355]
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Phase reweighting

Corresponds to finite isospin: µd = −µu (no symm. breaking term)

Phases: detM(µ̂B)

∣detM(µ̂B)∣
= e iθ compact → no tails (no overlap prob.) (reliable)

Method 1

n̂I = ⟨
∂

∂µl
ln ∣detM ∣⟩

PQ

∆p̂ = ∫
µ

0
n̂Id µ̂I +

1

(LT )3
ln ⟨e iθ⟩

PQ

Method 2

n̂L ≡
dp̂

d µ̂B
= 1

(LT )3 ⟨e iθ⟩PQ
⟨e iθ ∂

∂µ̂B
ln detM⟩

PQ

∆p̂ = ∫
µB

0
n̂L(µ̂′B)d µ̂′B
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Different reweighting methods on our ensembles
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Results for the pressure
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The Taylor expansion

∆p̂ = p2(T )µ̂2
B + p4(T )µ̂4

B + . . .

Two ways to calculate them:

1. From µB = 0 simulations. Need polynomials of

Dn ≡ ( ∂n

∂µ̂n
B

ln detM)
µ̂B=0

2. Fit to simulations at imaginary chemical potential

Method 1 inherits an overlap problem from reweighting from µB = 0

(BUT: on these ensembles reweighting from µB = 0 works)

Method 2 has systematic errors from the fit function (BUT: we can

compare with Method 1)
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Exponential resummation

A truncation of reweighting from µ = 0, where one approximates:

Dn ≡ (
∂n

∂µ̂n
B

ln detM)
µ̂B=0

detM(µ̂B)
detM(0)

≃ exp(
N

∑
n=1

1

n!
Dnµ̂

n
B)

∆p̂ ≃ 1

(LT )3
ln ⟨exp(

N

∑
n=1

1

n!
Dnµ̂

n
B)⟩

µ=0

Note:

� The exponential overlap problem of reweighting comes back (but:

for our ensembles, reweighting from µB = 0 actually works!)

� No unbiased stochastic estimator known for the exponential (but:

we calculate the Dn exactly, without stochastic estimators!)

Mondal, Mukherjee, Hegde; PRL 128 (2022) 2, 022001 [2106.03165]
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Resummations based on shifting sigmoid functions

Defining implicit equation
Instead of fix T , we work at a fixed value for some observable:

F (T , µ̂B) = F (T ′(T , µ̂B),0)
T ′ = T (1 +#µ̂2

B +#µ̂4
B + . . . )

F is some observable that looks like a sigmoid function in T .

Two schemes

F = n̂L
µ̂B

→ T ′ = T (1 + κ2µ̂2
B + κ4µ̂4

B + . . . )

F = n̂L
n̂SBLL

→ T ′ = T (1 + λ2µ̂2
B + λ4µ̂4

B + . . . )

Both can be calculated with ImµB simulations (Jana Guenther’s talk)

W-B: PRL126 (2021) 23, 232001 [2102.06660 [hep-lat]]

W-B: PRD 105 (2022) 11, 114504 [2202.05574 [hep-lat]]
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Chemical potential scan
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Temperature scan
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Summary

� Reliable results for µB > 0 from phase reweighting

� We compared the direct results with extrapolations for 2stout 163 × 8

lattices in the range 145 MeV ≤ T ≤ 240 MeV and 1 ≤ µ̂B ≤ 3.

� The Taylor expansion appears to converge, but to cover the entire

range one needs at least O(µ8
B) in the pressure

� The shifting sigmoid method with the Stefan-Boltzmann correction

converges faster, with order λ4 covering the entire range (this

corresponds to O(µ6
B) in the Taylor)

� The shifting method without the Stefan-Boltzmann correction to

order κ4 works in the crossover region but slightly underestimates

the density at high temperatures

� The exponential resummation method shows pathological

convergence properties

11



Reduced matrix formalism

� Hasenfratz, Toussaint ’91: for the staggered operator we have:

detM(µ̂) = e3V µ̂
6V

∏
i=1

(ξi − e−̂µ)

� the ξi are the eigenvalues of the so-called reduced matrix P

P = −(
Nt−1

∏
i=0

Pi)L , Pi = (
Bi 1

1 0
) ,

Bi = 2η4(D(3) + am)∣t=i , L = (U4 0

0 U4
) ∣

t=Nt−1
,

(1)

� Temporal gauge

� The ξi depend only on the gauge fields, and not µ

� Given the ξi we can calculate the reweighting factors from µ = 0 as

well as the Dn = ( ∂n

∂µ̂n
B

ln detM)
µ̂B=0

exactly for each configuration
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