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Introduction

Most results on g > 0 rely on extrapolation from g =0 or u2B <0
Usually rely on some kind of expansion, e.g. Taylor series in up
Goal: Quantitatively check the reliability of some extrapolation schemes
Two steps

e Direct results for ug > 0 (reweighting with no overlap problem)

e Reimplement extrapolation schemes with the same setup

Lattice setup
e 2stout N, =8 (tree-level improvement on p takes it close to cont.)

e Aspect ratio LT =2

Formulas are schematic
a=p/T Azn/T3 p=p/T*
det M;(my, iy = fig/3, U)Y/? det Ms(ms, fis = 0, U)Y* — det M(fig)



Reweighting from gz =0

Simulate at pug =0. Use:

Ap=p(ie) - p(0) = (L;'):" " (dj:tl\’/‘,”(?os))> -0

Two exponential problems:

det M(fig)

e sign problem: fluctuating phases of et M(0)

— bad signal-to-noise ratio

£ det M(jig)

e overlap problem: heavy tail of the distribution o detM(0)

— unknown systematic error (not reliable)

The numerical evidence suggests that the main bottleneck is the overlap
problem, and not the sign problem.

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102 (2020) 3, 034503 [2003.04355]



Phase reweighting

Corresponds to finite isospin: pg = —p, (no symm. breaking term)
det M(jig) _ i

Phases: r3o7¢70y) = € compact — no tails (no overlap prob.) (reliable)
Method 1
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methods on our ensembles
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Results for the pressure
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The Taylor expansion

Ap=po(T)p% +pa(TAE + ...

Two ways to calculate them:

1. From ppg = 0 simulations. Need polynomials of
Dy = (& Indet M)

[g=0
2. Fit to simulations at imaginary chemical potential

Method 1 inherits an overlap problem from reweighting from pg =0
(BUT: on these ensembles reweighting from pg = 0 works)

Method 2 has systematic errors from the fit function (BUT: we can
compare with Method 1)



Exponential resummation

A truncation of reweighting from u = 0, where one approximates:

D, 5( 8“7 Indet/\/l)
oy

f1g=0

det M(jig)
=EARB) =D, il
det M(0) (Z “B)

o byl 10

n=0
Note:

e The exponential overlap problem of reweighting comes back (but:
for our ensembles, reweighting from g = 0 actually works!)

e No unbiased stochastic estimator known for the exponential (but:
we calculate the D, exactly, without stochastic estimators!)

Mondal, Mukherjee, Hegde; PRL 128 (2022) 2, 022001 [2106.03165]



Resummations based on shifting sigmoid functions

Defining implicit equation
Instead of fix T, we work at a fixed value for some observable:

F(T7ﬁ3) = F(T,(T,ﬂs),O)
T =T (1+#p5+#05+...)

F is some observable that looks like a sigmoid function in T.

Two schemes

F=-t > T'=T(1+kof+rafig+...)
KB
ﬁL A2 A~
F:ﬁfBL > T’ =T(1+X\Ag+Nafig+...)

Both can be calculated with Im pg simulations (Jana Guenther's talk)

W-B: PRL126 (2021) 23, 232001 [2102.06660 [hep-lat]]
W-B: PRD 105 (2022) 11, 114504 [2202.05574 [hep-lat]]



Chemical potential scan

16° x 8

r T=170 MeV

T=160 MeV

il-

direct simulation
Taylor NLO
Taylor NNLO
Taylor NNNLO

e

il

direct simulation
Reweighting from p=0
shift of _

exp. resum. to u%

exp. resum. to u}

exp. resum. to uf




Temperature scan
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e Reliable results for g > 0 from phase reweighting

e We compared the direct results with extrapolations for 2stout 163 x 8
lattices in the range 145 MeV < T <240 MeV and 1< fig < 3.

e The Taylor expansion appears to converge, but to cover the entire
range one needs at least O(,u%) in the pressure

e The shifting sigmoid method with the Stefan-Boltzmann correction
converges faster, with order A4 covering the entire range (this
corresponds to O (,u%) in the Taylor)

e The shifting method without the Stefan-Boltzmann correction to
order k4 works in the crossover region but slightly underestimates
the density at high temperatures

e The exponential resummation method shows pathological
convergence properties
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Reduced matrix formalism

e Hasenfratz, Toussaint '91: for the staggered operator we have:

~ 6\/ ~
det M()) = &Y/ ] (& - e7)
i=1

the &; are the eigenvalues of the so-called reduced matrix P

N1 .
P:—(H P,-)L, P,-:(B' 1),
i=0 10

(1)
3) e O
B =2n4(D +am)|t:i’ L= 0 U |t=N—17

Temporal gauge

The &; depend only on the gauge fields, and not p

Given the &; we can calculate the reweighting factors from p =0 as

well as the D, = (6‘% Indet /Vl) exactly for each configuration
B

fig=0
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