Isothermal and isentropic speed of sound in (2+1)-flavor QCD at non-zero baryon chemical potential

D. Clarke for the HotQCD collaboration

Universität Bielefeld

Lattice2022, 11 Aug 2022

Fakultät für Physik

D. A. Clarke

Motivation and strategy

$$c_T^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_T \qquad \qquad c_s^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_{s/n_B}$$

Can use c_s^2 to probe QCD phase diagram:

- Related to cooling/expansion rate
- Minimum/ "softest point" may indicate long-lived fireball

Look at c_X^2 at finite μ/T . Commonly played game:

- **1**. Write P/T^4 as **Taylor expansion** in μ/T
- 2. Derive other quantities from P/T^4 using thermodynamics
- 3. Measure Taylor coefficients on lattice
- 4. Compare against **HRG** at low T

For convenience, $\hat{X} \equiv XT^{-k}$ with k s.t. \hat{X} dimensionless (e.g. $\hat{\mu} = \mu/T$)

Dealing with 3 chemical potentials $\hat{\mu}_B$, $\hat{\mu}_Q$, $\hat{\mu}_S$

To make contact with T- $\hat{\mu}_B$ plane, need to eliminate 2 independent variables

Can impose external constraint, e.g.

1.
$$\hat{\mu}_Q = \hat{\mu}_S = 0$$

- 2. $n_S = 0$, $n_Q/n_B = 0.4$ (RHIC-like)
- 3. $n_S = 0$, $n_Q/n_B = 0.5$ (isospin-symmetric)

and think of **expansions in** $\hat{\mu}_B$ **only**

Some context and setup

Related studies from the past, for instance:

- Lattice $\hat{\mu}_B = 0^{1,2}$
- Lattice $\hat{\mu}_B > 0^{3,4}$

We expand on our previous $N_f = 2 + 1$ HISQ studies:

- Increased statistics $N_{\tau} = 8$, 12 by more than factor 10 (≤ 1.5 M per β)
 - Overlap with configurations in charm study (Sipaz, Tue 16:30)
- Added $N_{\tau} = 16$ allowing continuum extrapolation
- ▶ Taylor series up to 8^{th} order; converges well at least for $\hat{\mu}_B < 1.5^{5,6}$
- ¹A. Bazavov et al., Phys. Rev. D, 90, 094503 (2014).
- ²S. Borsányi et al., Physics Letters B, 730, 99–104 (2014).
- ³A. Bazavov et al., Phys. Rev. D, 95.5, 054504 (2017).
- ⁴S. Borsanyi et al., J. High Energ. Phys. 2018.10, 205 (2018).
- ⁵D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

⁶Strictly speaking, reliability range depends on observable and temperature. (Jishnu)

D. A. Clarke

After imposing our constraint:

Lattice extraction:

$$\Delta X(T,\hat{\mu}_B) \equiv X(T,\hat{\mu}_B) - X(T,0)$$

$$egin{aligned} \Delta \hat{p} &= \sum_{k ext{ even}} P_k \, \hat{\mu}^k_B \ \Delta \hat{n}_B &= \sum_{k ext{ odd}} N_k \, \hat{\mu}^k_B \ \Delta \hat{s} &= \sum_{k ext{ even}} \sigma_k \, \hat{\mu}^k_B \end{aligned}$$

(Jishnu, next talk)

$$Z = \int \mathcal{D}U \prod_{f} (\det D_{f})^{1/4} e^{-S_{G}}$$
$$X \rangle = \frac{1}{Z} \int \mathcal{D}U \prod_{f} (\det D_{f})^{1/4} e^{-S_{G}} X.$$

For example

$$\frac{1}{V}\partial_{\hat{\mu}_B}\log Z = \frac{1}{4V}\sum_f \operatorname{tr} D_f^{-1} \frac{\partial}{\partial \hat{\mu}_B} D_f,$$

unbiased estimates with 500+ random vectors.

Again, after constraining,

$$X' \equiv T \frac{\partial X}{\partial T,}$$

$$c_T^{-2} - 3 = \frac{P_2'}{P_2} + \sum_{k \text{ even}} S_k \, \hat{\mu}_B^k.$$

Every term in S_k contains factors like $\left(\frac{P_m}{P_2}\right)'$, with m even. This structure hints at $\hat{\mu}_B$ independence in HRG.

$$\hat{\epsilon} = 3\hat{p} + T\frac{\partial\hat{p}}{\partial T}$$

At fixed s/n_B :

$$c_s^2 \approx \frac{\sigma_0}{\hat{C}_V} \left(1 + v_2 \, \hat{\mu}_B^2 + v_4 \, \hat{\mu}_B^4 \right)$$

with

and

$$\hat{C}_V \equiv \frac{C_V}{T^3} \Big|_{\hat{\mu}_B=0} = 3\sigma_0 + \sigma'_0$$
$$v_k(N_i, \sigma_m, \sigma'_n, \hat{C}_V).$$

$$\hat{s} = \hat{\epsilon} + \hat{p} - \hat{\mu}_B \hat{n}_B - \hat{\mu}_Q \hat{n}_Q - \hat{\mu}_S \hat{n}_S$$

Non-interacting, quantum, relativistic gas eventually gives (single species)

$$\frac{P}{T} = \frac{m^2 gT}{2\pi^2} \sum_{k=1}^{\infty} \frac{\eta^{k+1} z^k}{k^2} K_2\left(\frac{mk}{T}\right), \qquad z \equiv e^{\hat{\mu}_B B + \hat{\mu}_Q Q + \hat{\mu}_S S},$$

with K_2 modified Bessel function 2^{nd} kind. HRG:

- Assume such gas where hadrons and resonances only d.o.f.
- \blacktriangleright Hence valid up to $\sim T_{\rm pc}$
- Sum over all such states, each with g_i , m_i , etc.
- \blacktriangleright K_2 exponentially suppressed, so can keep few terms

HRG at $\hat{\mu}_Q = \hat{\mu}_S = 0$

Schematically,

$$\hat{p} = f_M(T) + f_B(T) \cosh(\hat{\mu}_B)$$
$$\hat{\epsilon} = 3f_M(T) + f'_M(T) + (3f_B(T) + f'_B(T)) \cosh(\hat{\mu}_B)$$
$$\hat{n}_B = f_B(T) \sinh(\hat{\mu}_B)$$

with $f_M(T)$ mesonic and $f_B(T)$ baryonic contributions, respectively.

$$c_T^2 = \left(\frac{\partial p}{\partial \hat{\mu}_B}\right) \left(\frac{\partial \epsilon}{\partial \hat{\mu}_B}\right)^{-1} = \frac{1}{3 + f_B'(T)/f_B(T)}$$

 c_s^2 is more involved:

$$c_s^2 = \frac{\hat{n}_B^2 \left(3\hat{s} + T\frac{\partial \hat{s}}{\partial T}\right) - 2\hat{s}\hat{n}_B \frac{\partial \hat{s}}{\partial \hat{\mu}_B} + \hat{s}^2 \frac{\partial \hat{n}_B}{\partial \hat{\mu}_B}}{(\hat{\epsilon} + \hat{p}) \left(\left(3\hat{s} + T\frac{\partial \hat{s}}{\partial T}\right) \frac{\partial \hat{n}_B}{\partial \hat{\mu}_B} - \frac{\partial \hat{s}}{\partial \hat{\mu}_B} \frac{\partial \hat{s}}{\partial \hat{\mu}_B}\right)}$$

Lines of constant s/n_B

Lattice:
$$\hat{\mu}_B = \sum_{n=1}^{\infty} h_{2n-1}(N_i, \sigma_m) \left(\frac{s}{n_B}\right)^{1-1}$$

Good agreement between lattice and HRG below $T_{\rm pc}$.

D. A. Clarke

Results: HRG c_X^2 for $\hat{\mu}_Q = \hat{\mu}_S = 0$

Meson-independence of c_T^2 eliminates the bump.

Speed of sound at $\mu_B > 0$

Dip in c_s^2 in vicinity of T_{pc} . Dependence of c_s^2 on s/n_B is at most mild.

Results: Lattice c_T^2 for $n_Q/n_B = 0.5$

$$c_T^{-2} - 3 = \frac{P_2'}{P_2} + \sum_{k \text{ even}} S_k \, \hat{\mu}_B^k.$$

- \blacktriangleright Dip in c_s^2 can be attributed to mesonic contribution in HRG
- Further calculations at $n_Q/n_B = 0.5$ ongoing
- May be interesting to look into scaling behavior near chiral transition, sensitivity not expected except for very low m_l
- We are working on other EoS observables at finite μ (Jishnu)

Thanks for your attention.