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Motivation and Introduction

• In principle, QCD can explain the above phase diagram completely

• Unfortunately, in reality, it still remains to be a conjectured one

• A grand canonical prescription is followed, forming the ensemble along with
a grand canonical partition function Z(µ, V, T )

• The formulation is done by remaining in a non-perturbative regime

• The estimates of excess pressure and number density are considered here

• Initially, the setup of calculation is being briefly discussed
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Computational Setup

• The present work has made use of 2+1-flavor HISQ ensembles for three
temperatures at T = 135 , 157 and 176 MeV

• The quark masses are tuned to their respective physical values.

• The calculations have been performed on a 323 · 8 lattice for all three T’s.

• Within every gauge configuration, the scaled n-point correlation functions D̃n

are calculated stochastically using random volume sources of O(500)

• We have considered only upto 4 point correlation functions (1 ≤ n ≤ 4)

• The work is done with an ensemble of 20 K gauge field configurations

• The computations are mostly done with µB

• A few also done with µI as the sign problem is evaded
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Taylor Series (TS) Expansion

• In form of a Taylor series (TS) in µB , the excess pressure is given by

∆PE
N (T, µB)

T 4
=

1

V T 3
ln

[
Z(µ)

Z(0)

]
=

N∑
n=1

X2n

(2n)!

(µB

T

)2n
QNS : X2n =

∂2n

∂(µB/T )2n

[∆P

T 4

]∣∣∣∣∣
µB=0

(1)

• The number density in a Taylor form, is given by

N
T 3

=
∂

∂(µB/T )

[
∆P

T 4

]
=

N∑
n=1

X2n

(2n− 1)!

(µB

T

)2n−1
(2)

• There is a slow convergence rate and non-monotonic behaviour

• It is therefore essential to calculate TS to sufficiently high orders in µB

• Calculation of high-order TC are very tedious, computationally expensive

• Is there any possible way around ?

• The immediate solution is an all-ordered resummation maybe
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A brief on Resummation methods

• Primarily, two methods of resummation are briefly enlightened here

• The Padé resummation provides important Padé approximants

• They are useful in approximating the behaviour of a function near a given
value of the argument

• Which is done by a rational function of an order, equal to that of the TS
being approximated

• They may work in certain domains where Taylor approximations fail to
converge

▶▶▶ For a more detailed explanation, please refer to the TALKS ON

"Isentropic equation of state in (2+1) flavor QCD" by
Jishnu Goswami

"Multi-point Padé for the study of phase transitions" by
Francesco Di Renzo

• The present work is focused on a second method of resummation

• Which is the exponential resummation method
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Exponential Resummation (ER)

• The resummed estimate to all orders in µB for Dn(1 ≤ n ≤ N) is given by

∆PR
N (T, µB)

T 4
=

1

V T 3
ln

〈
exp

(
N∑

n=1

Dnµ̂
n
B

)〉
, Dn =

1

NR

NR∑
r=1

D̃
(r)
n (3)

where ⟨·⟩ is the expectation value over all possible gauge field configurations
in an ensemble generated at µB = 0 with NR random vectors per
configuration [S. Mondal, S. Mukherjee, P. Hegde, Phys. Rev. Lett 128, 022001

(2022)]

• Dn are n-point correlation functions which are real for even n, imaginary
for odd n, given by

D̃n =
Dn

n!
=

1

n!

∂n

∂µ̂n
B

ln detM (T, µ̂B)

∣∣∣∣∣
µB=0

(µ̂B ≡ µB/T ). (4)

• Hence, ∆PR
N (T, µ̂B) = ∆PE

N (T, µ̂B) +
∑∞

n>N ⟨Di
1D

j
2 . . . D

k
N ⟩ µ̂n

B , where
1 · i+ 2 · j + · · ·+N · k = n.
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A major but hidden problem: Bias
• The highly useful ER suffers from the emergence of biased estimates

• That is purely by virtue of the way the series is constructed

• In principle, they manifest when the derivative estimate from at least one
random vector, is raised at least to quadratic integral powers

(
Dn
)m

=

[
1

NR

NR∑
r=1

D
(r)
n

]m
=

[( 1

NR

)m NR∑
r1=1

...

NR∑
rm=1

D
(r1)
n ...D

(rm)
n

]

≈ Biased estimate +
NR∑

...

NR∑
r1 ̸=... ̸=rm

D
(r1)
n ...D

(rm)
n

(5)

• These effects can prove to be very drastic in the long run involving
• Large values of µ

• Higher orders of µ in series expansion
• Higher order µ derivatives of free energy

• It is therefore high time we try to identify and minimise their
emergence and subsequent effects in calculations
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Plots of pressure (left) and number density (right) [S. Mondal, S. Mukherjee,

P. Hegde, Phys. Rev. Lett 128, 022001 (2022)]

• The different unbiased powers of Dn are used for constructing TC in QNS

• There is no such scope to introduce unbiased powers within the given
formulation of ER with transcendental functions being present

• The above pressure and number density plots clearly indicate the significant
difference between the two approaches for large orders and values of µ

• This is clearly attributable to biased and unbiased estimates

• Hence, one is motivated to truncate the ER series in such a manner so
that the truncated series reproduces QNS upto O(µN

B )
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Cumulant Expansion (CE): Formalism

• Considering X =
∑N

n=1
µn

n!
Dn , the cumulant expansion (CE) of ER series in

eqn. (3) yields (barring the 1/V T 3 factor)

ln
〈
eX
〉
=

M∑
n=1

κn

n!
+O(κM+1) (6)

where κn is the nth cumulant, N represents the highest derivative order and
M is the total number of cumulants

• |∆PC
N,M |/T 4 and NC

N,M/T 3 are calculated with M = 4 with N = 2, 4

• The first 4 cumulants in X are represented as follows

κ1 = ⟨X⟩ ,

κ2 =
〈
X2
〉
− ⟨X⟩2 ,

κ3 =
〈
X3
〉
− 3

〈
X2
〉
⟨X⟩+ 2 ⟨X⟩3

κ4 =
〈
X4
〉
− 4

〈
X3
〉
⟨X⟩+ 12

〈
X2
〉
⟨X⟩2 − 6 ⟨X⟩4 − 3

〈
X2
〉2

(7)

[S. Mitra, P. Hegde, and C. Schmidt, (2022), arXiv:2205.08517]
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• The higher-order fluctuations are truly captured by the unbiased
cumulant estimates, which used to get suppressed by ER

• A good agreement is observed between
• biased cumulant and ER (∆ and red bands)
• unbiased cumulant and QNS (∇ and blue bands)
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Cumulant Expansion: Debacle

• Despite the all-important introduction of unbiasedness in the calculations,
the cumulant expansion does deprive us of some things which are as follows

1. The reweighting factor

2. The partition function Z

3. The phasefactor

4. The singularities of partition function Z
in the complex µ̂B plane

• The obvious search is therefore to retrieve back everything lost, but
preserving unbiasedness

• Is that achievable ?

12 / 23



Motivation and Introduction Computational Setup Taylor Series Expansion Exponential Resummation (ER) ER but a bias Effect of bias and cumulant expansion Cumulant Expansion Towards an Unbiased Exponential Resummation Conclusions and Future Outlook Phasefactor and Roots

A possible unbiased ER formula: idea

• The idea is to search for an unbiased counterpart of ER which would
reproduce unbiased powers exactly upto O(µN )

• In this new formalism, all mathematical manipulations are done with the
the sample of random volume sources available within every gauge
configuration constituting the configuration ensemble

• In µ basis, the new formalism resembles the following shape

Pµ
ub =

1

V T 3
ln Zµ

ub, Zµ
ub =

〈
eA(µ)

〉
, A(µ) =

N∑
n=1

µn Cn
n!

(8)

where the Cn(different µ coefficients) for n = 1, 2, 3, 4 are given as follows:
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Different µ coefficients

C1 = D1,

C2 = D2 +
(
D2

1 − (D1)
2
)
,

C3 = D3 + 3
(
D2D1 − (D2) (D1)

)
+
(
D3

1 − 3 (D2
1) (D1) + 2 (D1)

3
)
,

C4 = D4 + 3
(
D2

2 − (D2)
2
)
+ 4

(
D3D1 − (D3) (D1)

)
+ 6

(
D2D2

1 − (D2) (D2
1)
)

− 12
(
(D2D1) (D1)− (D2) (D1)

2
)
+(

D4
1 − 4 (D3

1) (D1) + 12 (D2
1) (D1)

2 − 6 (D1)
4 − 3 (D2

1)
2
)
,

• The simplicity of this basis is highlighted by the fact that
the degree of the unbiased QNS expansion, being reproduced by this method
is exactly identical to
the degree of the polynomial A(µ), being exponentiated
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Cumulant basis: The second one

• In cumulant basis, a new variable W is defined, where

W =
∑N

n=1
µn

n!
Dn ̸= X, we have

PW
ub =

1

V T 3
ln ZW

ub , ZW
ub =

〈
eY (W )

〉
, Y (W ) =

M∑
n=1

Ln(W )

n!
(9)

• which would reproduce exactly the first M cumulants in UCE

ln
〈
eY
〉
=

M∑
n=1

κub
n

n!
+O(κM+1) (10)

• N cumulants in cumulant basis is equivalent to having unbiased powers to
O(µN) for µ = µ(B,Q,S) and O(µ2N) for µ = µI

• The first four Ln in eqn. (9) and κub
n in eqn. (10) are explained as follows
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L1 = (W )

L2 =

[(
W 2
)
−
(
W
)2]

L3 =

[(
W 3
)
− 3

(
W 2
) (

W
)
+ 2

(
W
)3]

L4 =

[(
W 4
)
− 4

(
W 3
) (

W
)
+ 12

(
W 2
) (

W
)2

− 6
(
W
)4

− 3
(
W 2
)2]

(11)

• The κub
n are unbiased cumulants resembling eqn. (7) with following

transformation : Xn ⇒ Un[X] for n = 1, 2, 3, 4

• Un[X] is the unbiased nth power of X, (X =
∑N

n=1
µn

n!
Dn) given by

Un[Dm] =
n!∏n−1

k=0 (NR − k)!

NR∑
...

NR∑
r1 ̸=... ̸=rn

D
(r1)
m ...D

(rn)
m

• A faster rate of convergence with more higher-order terms ensure that
cumulant basis is the preferred basis to work with
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Pressure (left) and phasefactor (right) plots for T = 135 and 157 MeV
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Roots of Z
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Roots of Z2 and Z4 in complex µB plane at 135 MeV

• The unbiased formalism ensures a newly defined partition function Z
• It is therefore possible to search for roots of Z in the complex µ̂B plane

• The green outline represents a naive lower bound of the roots
appearing in the complex µ̂B plane
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Conclusions and Future Outlook

• A cumulant expansion has been established which duly serves as a bridge
between a strict Taylor expansion (QNS) and old exponential resummation

• It has been possible to regulate the degree of unbiasedness at the level of
individual cumulants and also at different powers of µ

• The unbiased (partially, in principle) exponential resummation, is guaranteed
to provide exact unbiased results upto O(µN )

• Along with a newly defined reweighting factor and Z, it has been possible to
re-obtain phasefactor and roots of Z in the complex µB plane

• Most significantly, it gives an all-ordered unbiased exponentially
resummed series in the limit of a truly infinite cumulant series

In future, look for signs of QCD critical point by including
higher-order derivatives
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Plots of results from cumulant and µ bases
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Pressure and number density plots in cumulant and µ bases for N = 2,4

• Cumulant basis provides extra higher order contribution terms over µ basis

• Fortunately, within the set of extra terms, we have terms and
counter terms possibly

• Which nullifies the individual fluctuations among one another

• Faster convergence in cumulant basis over µ basis

• Making agreement with QNS, so good

• Hallmark of a genuine series expansion, where successive higher order
contributions are less than the leading order
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Phasefactor in cumulant and µ bases

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.3 0.6 0.9 1.2 1.5

(µB/T)

T = 135 MeV

< cos θ2
W >

< cos θ4
W >

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.3 0.6 0.9 1.2 1.5

(µB/T)

T = 135 MeV

< cos θ2
µ >

< cos θ4
µ >

Phasefactor plot at T = 135 MeV (cumulant and µ bases)

• Now, can calculate phasefactor

• Quite similar results for phasefactor from both the bases

• Plummeting to zero almost at the same value of µB/T
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Comparison between cumulant and µ bases

• The work on unbiased formalism is primarily done in the cumulant basis,
as it provides a faster rate of convergence and a genuine series expansion as
compared to µ basis

• The difference due to bias proved to be very acute and qualitatively radical
at least in the case of 135 MeV results while working with µ̂B

• The formalism obviate the bias to some extent, managing to agree along
QNS results with negligible higher-order contributions
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