The glueball spectrum with $N_f = 4$ light fermions

27th – August 2022

Andreas Athenodorou The Cyprus Institute D 0000-0003-4600-4245

In collaboration with Jacob Finkenrath, Adam Lantos and Michael Teper

General considerations 1

Recently for Pure Gauge:

- Extracted the masses of lightest glueballs for all 5 irreducible reps (A₁, A₂, E, T₁, T₂) of cubic rotation group and P = ±, C = ±: N ∈ [2, 12], improving older works: *M. Teper, 1987; Morningstar and Peardon, 1997; Lucini, Rago, and Rinaldi, 2010* We extrapolated to the continuum limit
- For enough $N \in [2, 12]$, that we extrapolated to the $N = \infty$ limit
- We have identified continuum spins J for the lightest states
- Control systematic errors: multiglueball states; di-torelons; topological freezing

Publications:

- SU(3): AA and M. Teper, JHEP 11 (2020), 172, e-Print: 2007.06422 [hep-lat]
- SU(∞): AA and M. Teper, JHEP 12 (2021), 082, e-Print: 2106.00364 [hep-lat]

General considerations 2

Glueball spectrum in SU(3) has a phenomenological importance

What is the effect of the light dynamical quarks?

- Very noisy correlators requires lots of statistics
- Extract the spectrum with $N_f = 4$ light quarks with $m_\pi \approx 250$ MeV
 Ensembles with 20k configurations
- Investigate the low-lying spectrum of A_1^{++} with $N_f = 2 + 1 + 1$ light quarks
- Ideally, perform an extended investigation for $N_f = 2 + 1 + 1$ light quarks

So far: Chen, 2021 ($N_f = 2 + 1$, $m_{\pi} = 140$ MeV), Gregory, 2012 ($N_f = 2 + 1$, $m_{\pi} = 360$ MeV), See also Davide Vadacchino's plenary: A REVIEW ON GLUEBALL HUNTING

Lattice Setup - fermions

We use ensembles with Clover improved Twisted mass fermions produced with
 N_f = 4 degenerate light flavors at three different lattice spacings
 N_f = 2 + 1 + 1 (2 degenerate light flavors) + strange + charm
 We use the Iwasaki improved action

$$S_{G} = \frac{\beta}{3} \sum_{x} \left(c_{0} \sum_{\substack{\mu,\nu=1\\\mu<\nu}}^{4} \left[1 - \operatorname{Re} \operatorname{Tr} \left(U_{x,\mu\nu}^{1\times1} \right) \right] + c_{1} \sum_{\substack{\mu,\nu=1\\\mu\neq\nu}}^{4} \left[1 - \operatorname{Re} \operatorname{Tr} \left(U_{x,\mu\nu}^{1\times2} \right) \right] \right)$$

The fermionic sector is implemented using the twisted mass formulation of lattice QCD, which for two mass degenerate quarks takes the form

$$S_F^l = a^4 \sum_x \bar{\chi}^{(l)}(x) \left(D_W[U] + \frac{i}{4} c_{SW} \sigma^{\mu\nu} \mathcal{F}^{\mu\nu}[U] + m_{0,l} + i\mu_l \gamma_5 \tau^3 \right) \chi^{(l)}(x)$$

	β	c_{sw}	μ	L	am_{PS}	t_0/a^2
$N_F = 4$						
cA4.60.16	1.726	1.74	0.006	16	0.2313(23)	3.565(39)
cB4.06.16	1.778	1.69	0.006	16	0.2652(53)	4.947(62)
cB4.06.24	1.778	1.69	0.006	24	0.1580(8)	4.667(17)
cC4.05.24	1.836	1.6452	0.005	24	0.1546(20)	6.422(48)
$N_F = 2 + 1 + 1$						
cA211.53.24	1.726	1.74	0.005	24	0.1661(4)	2.342(6)
cA211.25.32	1.726	1.74	0.003	32	0.1253(1)	2.392(4)

Lattice Setup – Pure Gauge

We generate Pure Gauge ensembles

-) For several values of the lattice spacing (eta)
- For N = 2 to N = 12

We use the Wilson action

$$S_L = \beta \sum_p \{1 - \frac{1}{N} \operatorname{ReTr} U_p\}$$
$$\beta = \frac{2N}{g^2}$$

Topological Freezing

Correlation Length: $\langle Q(is)Q(is+\xi_Q)\rangle/\langle Q^2\rangle=e^{-1}$

AA and M. Teper, arXiv:2007.06422

 10^{5}

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 10^{0}

AA and M. Teper, arXiv:2106.00364

 ξ_Q

Quantum Numbers

On the lattice, continuous rotational symmetry broken to the symmetry of the octahedral group

Irreducible representations are A_1, A_2, E, T_1, T_2

We use gluonic operators in irreducible representations of the octahedral group

Near the continuum limit, full rotational symmetry is recovered

Continuous spin obtained from the subduced representations of the rotation group SO(3) restricted to the octahedral irreducible representations

Correlation Function

$$\begin{aligned} C(t) &= \langle \Phi^{\dagger}(t)\Phi(0) \rangle \\ &= \langle \Phi^{\dagger}(0)e^{-Ht}\Phi(0) \rangle \\ &= |\langle 0|\Phi(0)|vac \rangle|^{2}e^{-E_{0}t} \\ &+ \sum_{n=1} |\langle n|\Phi(0)|vac \rangle|^{2}e^{-E_{n}t} \\ &\frac{t \to \infty}{\longrightarrow} |\langle 0|\Phi(0)|vac \rangle|^{2}e^{-E_{0}t} \end{aligned}$$

We calculate the effective energies

$$\lim_{t \to \infty} \left[-\ln\left(\frac{C(t)}{C(t-a)}\right) \right] = aE_0$$

Example of effective masses

We use the variational calculation to extract the excitation spectrum

Extraction of the Excitation Spectrum

Construct a large basis of Operators $\,\Phi_i:i=1,2,\dots\,$ with RIGHT QUANTUM NUMBERS

Calculate the correlation function (Matrix) $C_{ij}(t) = \langle \Phi_i^{\dagger}(t) \Phi_j(0) \rangle$

Diagonalize the matrix $C^{-1}(t=0)C(t=ma)$

Extract the eigenvectors

(Extract the correlator for each state ($\sim e^{-E_n t}$)

By fitting the results, we extract the mass (energy) for each state

This is the so called Generalized Eigenvalue Problem (GEVP)

M. Lüscher and U. Wolff, Nucl. Phys. B339 (1990) 222–252.

Lattice Operators

Dperators have been constructed by linear combinations of:

Lattice Operators

Recent results on Pure Gauge Theory

Recent results on Pure Gauge Theory

Results for Planar Limit

Results for SU(3) Pure Gauge, continuum extrapolations

Topological Charge and scale setting

- We calculate the topological $\mathcal{Q} = \int d^4 x q(x)$
- With topological charge density: $q(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \{G_{\mu\nu}G_{\rho\sigma}\}$
- We use the Clover definition:

$$C_{\mu\nu} (x) = \frac{1}{4} \operatorname{Im} \left(\begin{array}{c} \\ \\ \end{array} \right)$$

- We smooth the UV fluctuations using the Wilson Flow.
- We solve the evolution equations: $\dot{V}_{\mu}(x,\tau) = -g_0^2 \left[\partial_{x,\mu} S_G(V(\tau))\right] V_{\mu}(x,\tau)$ $V_{\mu}(x,0) = U_{\mu}(x)$,
- With link derivative defined as:

$$\partial_{x,\mu} S_G(U) = i \sum_a T^a \frac{\mathrm{d}}{\mathrm{d}s} S_G\left(e^{isY^a}U\right) \bigg|_{s=0}$$
$$\equiv i \sum_a T^a \partial_{x,\mu}^{(a)} S_G(U),$$

• We can define a scale parameter t_0

$$F(t) = t^2 \langle E(t) \rangle$$
 where $E(t) = \frac{1}{4} B_{\mu\nu}^2(t)$

 \mathcal{C}

$$F(t)|_{t=t_0(c)} =$$
With $c = 0.3$.

Effective Masses

Correlation functions of specific operators used for extracting the spectrum

$$C(t) = \langle \Phi^{\dagger}(t)\Phi(0)\rangle = \langle \Phi^{\dagger}(0)e^{-Ht}\Phi(0)\rangle$$

= $|\langle 0|\Phi(0)|vac\rangle|^{2}e^{-E_{0}t} + \sum_{n=1} |\langle n|\Phi(0)|vac\rangle|^{2}e^{-E_{n}t} \xrightarrow{t \to \infty} |\langle 0|\Phi(0)|vac\rangle|^{2}e^{-E_{0}t}$

We calculate the effective energy $\lim_{t\to\infty} \left[-\ln\left(\frac{C(t)}{C(t-a)}\right) \right] = aE_0$

The $N_f = 4$ Glueball Spectrum

The $N_f = 4$ Glueball Spectrum

The $N_f = 4$ Glueball Spectrum

The A_1^{++} channel with $N_f = 2 + 1 + 1$ fermions

Observations

Observations for Pure Gauge:

- N = 3 'close to' $N = \infty$: modest $O(1/N^2)$ correction suffices
- $J^{PC} = 0^{++}$ scalar is the lightest glueball
- $J^{PC} = 2^{++}$ next with mass ~1.5 × 0^{++}
- $J^{PC} = 0^{-+}$ mass is next, very close to 2^{++}
- $J^{PC} = 1^{+-}$ is next, very close to first excited 0^{++}
- Other C = states are much heavier

Observations for QCD with light dynamical quarks

- A_1^{++} includes an additional state
- A_1^{++} ground state depends strongly on m_{π}
- $J^{PC} = 2^{++}$ ground state is consistent with Pure Gauge SU(3)
- $J^{PC} = 0^{-+}$ ground state is very close to 2^{++}

The glueball masses are affected negligibly by dynamical quarks

From Vadacchino's plenary

Thanks for your attention!!!