Nonperturbative Matching of Hamiltonian and Lagrangian Simulations

<u>Christiane Groß¹</u>, Lena Funcke², Karl Jansen³, Angus Kan⁴, Stefan Kühn⁵, Simone Romiti¹, Carsten Urbach¹ ¹HISKP Uni Bonn ²MIT ³DESY ⁴University of Waterloo ⁵CYI

1. Motivation

- Testing universality: Lagrangian and Hamiltonian simulations should lead to the same result
- Matching: continuum limit in time direction on the Lagrangian side
- Measurement of the renormalized anisotropy of a lattice, needed for nonperturbative matching

5. Renormalized Continuum Limit

2. Setup

• Anisotropic Wilson-Action: $S = \beta \frac{1}{\xi_{input}} \sum_{r,\nu} P_{0\nu} + \beta \xi_{input} \sum_{r,\nu>\mu>0} P_{\mu\nu}$ • Anisotropy $\xi_{ren} = \frac{a_t}{a_s}$ on a $L^2 \times L/\xi_{input}$ lattice, take limit $\xi_{ren} \rightarrow 0$ • $\xi_{input} \neq \xi_{ren} \Rightarrow$ determine ξ_{ren} with static potential, in (2+1)D: $V(r) = a + \sigma \cdot r + b \ln(r)$ • U(1) configurations generated with Metropolis-Hastings MCMC

3. Normal or Sideways Potential

Figure 3: Determining β numerically such that $r_0/a_s(\beta,\xi)$ is constant, normal potentials

Figure 4: Change needed in β_{input} and renormalized continuum limit of the plaquette

• For each ξ_{input} , take measurements at several β and determine $r_0(\beta), \langle P \rangle(\beta), \xi_{ren}(\beta)$ • With linear interpolation, get $\beta_{ren} : r_0(\beta_{ren}) = r_0(\xi = 1)$

- Continuum limit in plaquette: cubic fit to $\langle P
 angle_{eta_{
 m ren}}$ in $\xi^2_{
 m ren,eta_{
 m ren}}$
- normal: $\langle P \rangle(0) = 0.6381(12), \chi^2_{red} = 0.27$, sideways: $\langle P \rangle(0) = 0.6365(14), \chi^2_{red} = 0.34$

4. Naive Continuum Limit

6. Outlook

- Small volume limit to match volume in Hamiltonian computations
- Determine ξ_{ren} with the gradient flow also at smaller β
- Other observables for matching, e.g. slope at $V(1), V(\sqrt{2})$

Figure 2: Naive continuum limit at $\beta = 1.7, L = 16$ for the plaquette and the Sommer parameter

• $\beta = \text{const.}, \xi_{\text{input}} \rightarrow 0$, cubic fit of $\langle P \rangle$ in ξ_{input}^2 • $\langle P \rangle$ not monotonous, spatial lattice size changes \Rightarrow Renormalization of (β, ξ) needed • U(1): Analytical or perturbative $(\beta, \xi)_{\text{ren}}(\xi_{\text{input}})$ not known • Keep a_s fixed with Sommer parameter $r_0: -r^2 \frac{d}{dr} V(r)|_{r=r_0} = c = -1.65$, choice of c: QCD + logarithm

References

[1] M. Alford, I. T. Drummond, R. R. Horgan, H. Shanahan, and M. Peardon. Measuring the aspect ratio renormalization of anisotropic-lattice gluons. *Physical Review D*, 63(7), Feb 2001.

- [2] T. M. R. Byrnes, M. Loan, C. J. Hamer, Frédéric D. R. Bonnet, Derek B. Leinweber, Anthony G. Williams, and James M. Zanotti. Hamiltonian limit of (3+1)-dimensional SU(3) lattice gauge theory on anisotropic lattices. *Physical Review D*, 69(7), Apr 2004.
- [3] Mushtaq Loan, Michael Brunner, Clare Sloggett, and Chris Hamer. Path integral monte carlo approach to the U(1) lattice gauge theory in 2+1 dimensions. *Physical Review D*, 68(3), Aug 2003.
- [4] Mushtaq Loan and Chris Hamer. Hamiltonian study of improved U(1) lattice gauge theory in three dimensions. *Physical Review D*, 70(1), Jul 2004.

[5] R. Sommer. A new way to set the energy scale in lattice gauge theories and its application to the static force and α_s in SU (2) Yang-Mills theory. *Nuclear Physics B*, 411(2-3), Jan 1994.