# Massless Schwinger model with a 4 -fermi-interaction at topological angle $\theta=\pi$ 

Dominic Hirtler, Christof Gattringer

Lattice 2022

$$
\text { August } 8^{\text {th }}-13^{\text {th }}, 2022
$$

The system in standard representation

Partition sum

$$
Z=\int \mathcal{D}[A] B_{\beta, \theta}[A] \int \mathcal{D}[\bar{\psi}, \psi] e^{-S_{F}[\bar{\psi}, \psi, A]}
$$

Villain Boltzmann factor with topological term

$$
B_{\beta, \theta}[A]=\sum_{\{n\}} \exp (-\frac{\beta}{2} \sum_{x}\left((\mathrm{~d} A)_{x}+2 \pi n_{x}\right)^{2}-i \theta \underbrace{\sum_{x} n_{x}}_{Q \in \mathbb{Z}})
$$

Fermionic action

$$
S_{F}[\bar{\psi}, \psi, A]=\frac{1}{2} \sum_{x, \mu} \gamma_{x, \mu}\left(e^{i A_{x, \mu}} \bar{\psi}_{x} \psi_{x+\hat{\mu}}-e^{-i A_{x, \mu}} \bar{\psi}_{x+\hat{\mu}} \psi_{x}\right)-\frac{J}{4} \sum_{x, \mu} \bar{\psi}_{x} \psi_{x} \bar{\psi}_{x+\hat{\mu}} \psi_{x+\hat{\mu}}
$$

Charge conjugation symmetry

$$
Z=\int \mathcal{D}[A] B_{\beta, \theta}[A] \int \mathcal{D}[\bar{\psi}, \psi] e^{-S_{F}[\bar{\psi}, \psi, A]}
$$

Charge conjugation:

$$
\begin{aligned}
A_{x, \mu} & \longrightarrow-A_{x, \mu} & & n_{x} \longrightarrow-n_{x} \\
\psi & \longrightarrow \bar{\psi} & & S_{F} \longrightarrow S_{F}
\end{aligned}
$$

In general:

$$
B_{\beta, \theta} \nrightarrow B_{\beta, \theta} \quad Z \nrightarrow Z
$$

For $\theta=0$ and $\theta=\pi: \quad B_{\beta, \theta} \longrightarrow B_{\beta, \theta} \quad Z \longrightarrow Z \quad$ Exact symmetry!

Is the $\theta=\pi$ symmetry broken for specific values of the quartic coupling $J$ ?

## System in dual-formulation

Complex action problem in standard representation: $B_{\beta, \theta}[A]=\sum K e^{i \theta Q}$
Exact dual-representation solves the complex action problem:

$$
Z=\left(\frac{1}{\sqrt{32 \pi \beta}}\right)^{V} \sum_{\{l, d, p\}} C[l, d, p](1+J)^{\sum_{x, \mu} d_{x, \mu}} e^{-\frac{1}{2 \beta} \sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)^{2}}
$$

where

$$
\begin{aligned}
& l_{x, \mu} \in\{-1,0,1\} \ldots \text { loop variables living on links } \\
& d_{x, \mu} \in\{0,1\} \quad \ldots \text { dimer variables living on links } \\
& p_{x} \in \mathbb{Z}
\end{aligned} \quad \ldots \text { plaquette occupation numbers living on plaquettes }
$$

Charge conjugation:

$$
l_{x, \mu} \longrightarrow-l_{x, \mu} \quad d_{x, \mu} \longrightarrow d_{x, \mu} \quad p_{x} \rightarrow \begin{cases}-p_{x} & \text { for } \theta=0 \\ -p_{x}-1 & \text { for } \theta=\pi\end{cases}
$$

## Graphical representation and constraints

Graphical representation:

$$
\bullet \longleftarrow l_{x, \mu}=-1
$$

$$
\begin{array}{llll}
\text { • } & d_{x, \mu}=0 & & \bullet \\
l_{x, \mu}=0 \\
\bullet & d_{x, \mu}=1 & & \rightarrow
\end{array} l_{x, \mu}=1
$$

$$
\begin{array}{cc}
0 & p_{x}=0 \\
\bullet-2 & p_{x}=-2 \\
\bullet & \\
& p_{x}=3
\end{array}
$$

Constraints:

- Every site must be either:
- endpoint of a single dimer or
- run through (in and out) by a single loop
- Plaquette occupation numbers must compensate flux of loops


## Graphical representation and constraints

Dimers/loops:


Plaquette occupation numbers:


## Update schemes

- Constant shift of all plaquette occupation numbers
- Worms of dimer chains with inversion of dimer occupation

- Local Transformations on plaquettes to shrink or expand loops

> Or
> Or

Observables and their dual representation
Topological charge:

$$
\begin{aligned}
\langle q\rangle= & -\frac{1}{V} \frac{\partial}{\partial \theta} \ln Z=\frac{1}{V}\left\langle\sum_{x} n_{x}\right\rangle \\
& \longrightarrow \frac{1}{2 \pi \beta V}\left\langle\sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)\right\rangle \\
\chi_{q}= & \frac{\partial}{\partial \theta}\langle q\rangle=\frac{1}{V}\left\langle\left[\sum_{x} n_{x}-\left\langle\sum_{x} n_{x}\right\rangle\right]^{2}\right\rangle \\
& \longrightarrow \frac{1}{4 \pi^{2} \beta}\left[1-\frac{1}{V \beta}\left\langle\left[\sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)-\left\langle\sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)\right\rangle\right]^{2}\right\rangle\right]
\end{aligned}
$$

## Observables and their dual representation

Expectation value of the gauge action density:

$$
\begin{aligned}
\left\langle F^{2}\right\rangle= & -\frac{2}{V} \frac{\partial}{\partial \beta} \ln Z=\frac{1}{V}\left\langle\sum_{x}\left((\mathrm{~d} A)_{x}+2 \pi n_{x}\right)^{2}\right\rangle \\
& \longrightarrow \frac{1}{\beta}-\frac{1}{V \beta^{2}}\left\langle\sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)^{2}\right\rangle \\
\chi_{F^{2}}= & -2 \frac{\partial}{\beta}\left\langle F^{2}\right\rangle=\frac{1}{V}\left\langle\left[\sum_{x}\left((\mathrm{~d} A)_{x}+2 \pi n_{x}\right)^{2}-\left\langle\sum_{x}\left((\mathrm{~d} A)_{x}+2 \pi n_{x}\right)^{2}\right\rangle\right]^{2}\right\rangle \\
& \longrightarrow \frac{1}{2 V \beta^{4}}\left\langle\left[\sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)^{2}-\left\langle\sum_{x}\left(p_{x}+\frac{\theta}{2 \pi}\right)^{2}\right\rangle\right]^{2}\right\rangle+\frac{4}{\beta}\left\langle F^{2}\right\rangle-\frac{2}{\beta^{2}}
\end{aligned}
$$

## Results

Topological charge $\langle q\rangle$ with corresponding susceptibility $\chi_{q}$ at $\beta=0.5, \theta=\pi$ :



Spontaneous breaking of charge conjugation symmetry at $J_{c} \approx 0.9$

## Results

Expectation value of the gauge action density $\left\langle F^{2}\right\rangle$ with corresponding susceptibility $\chi_{F^{2}}$ at $\beta=0.5, \theta=\pi$ :



Even observables do not signal breaking of charge conjugation symmetry

## Results

Topological charge $\langle q\rangle$ at $\beta=0.5, J=1.2$ :


In the broken phase we observe a first order transition as a function of $\theta$

## Summary and outlook

- We find spontaneous symmetry breaking at a critical coupling $J_{c} \approx 0.9$
- Transition is expected in the Ising universality class
- We are currently studying Binder cumulants and use finite size scaling to determine the critical exponents
- Additional runs at higher $\beta$ are in preparation


# Massless Schwinger model with a 4 -fermi-interaction at topological angle $\theta=\pi$ 

Dominic Hirtler, Christof Gattringer

Lattice 2022

$$
\text { August } 8^{\text {th }}-13^{\text {th }}, 2022
$$

