What is the best way to quantize non－linear electrodynamics？

Marina Krstic Marinkovic

ETHzürich
marinama＠ethz．ch

work with V．Errasti Diez，LMU／TUM／Cluster Origins［arXiv：2112．11477］
and G．Pierini，ETH Zurich

8－13 August 2022

Background

- Outdated problems with quantization of Maxwell's electrodynamics: self energy of a point particle infinite
- Interest in non-linear electrodynamics [Born '34, Born\&Infeld '34, Schwinger '51, Schwinger '54, Plebanski '69]
- Born-Infeld [BI] as a classical theory of strings and branes [Fradkin\&Tseytin ' 85 , Agnanic et. al '96]
- Quantization of NL extensions of electrodynamics (Dirac \rightarrow symplectic quantization)
- Goal: theoretical groundwork for non perturbative explorations of such theories
- Numerical explorations using lattice techniques

Motivation

- Simplest non-linear extension of QED: BI theory [Born '34, Born\&Infeld '34]
- Born Infeld on the [Sinclair\&Kogut '05, Sinclair\&Kogut '06]
- Further extensions incl. derivative self-interactions of the vector field: Generalized Proca (GP) or Vector Galileon theories [Tasinato ' 14 , Heisenberg'14]
- Applications in lattice theories, optics, and cosmology: coupling of nonlinear electrodynamics to gravity as a dark energy explanation [De Felice et al. '16]
- Axiomatic approach and extension to multi-field GP [Errasti Diez et al. '19]
- For the first time experiments probing non-linear regime of QED: PVLAS, LUXE, SwissFEL ...

Multiple options for extending (Q)ED

[Maxwell (QED)] $\mathscr{L}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$ [Maxwell; 1850-1865] *many talks at LATT22
[Proca (QEDm)] $\mathscr{L}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}$ [Proca; 1936-1938] Contribution \#359 at LATT22 [Tsang/Shindler, poster]

[Non-linear (NLE)] $\mathscr{L}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+f\left(F_{\mu \nu}\right)$ [Born \& Infeld; 1934]
[Generalized Proca (GP)] $\mathscr{L}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\tilde{f}\left(A_{\mu}, F_{\mu \nu}, S_{\mu \nu}\right)$ [Tasinato; 2014] - [Heisenberg; 2014] [Beltran Jimenez \& Heisenberg; 2016 [Errasti Diez, MKM; 2021]

$$
\begin{aligned}
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
S_{\mu \nu} & =\partial_{\mu} A_{\nu}+\partial_{\nu} A_{\mu}
\end{aligned}
$$

Constraints analysis in a nutshell

- Write a Lagrangian of the theory of interest: matter content + symmetries
- $\mathscr{L}=\mathscr{L}\left(Q^{1}, \ldots, Q^{N}\right)$ subject to constraints if $n_{\text {d.o.f. }}<N$
- Systematic iterative procedure to find a subspace of the configuration space that does admit a symplectic 2-form (physically meaningful space)

Constraints analysis in a nutshell

[Dirac-Bergmann '50-'58]

- Constraint analysis already at the classical level: avoid ghosts (Ostrogradski instabilities) [Ostrogradski 1850, Pais\&Uhlenbeck ‘51]

- Additional challenge: consistent quantization of any system prone to Ostograndski instabilities is not guaranteed
- The same applies to the multi-field gauge systems
- Usual suspects for additional constraints, in order that it admits quantization of the theory

The easiest approach to quantization

- Symplectic instead of Dirac's quantization
- Changing to Hamiltonian formulation cumbersome; non-local algebra of commutators
1.Start by bringing Langrangian to the following form:

$$
\mathscr{L}=\theta \dot{Q}+\hat{\mathscr{L}} ; \quad\{Q\}=\left\{A_{\mu}, p^{\mu}, \lambda\right\}
$$

2.Compute:

$$
\Omega_{\mathrm{mn}}=\frac{\delta \theta_{\mathrm{n}}}{\delta \mathrm{Q}^{\mathrm{m}}}-\frac{\delta \theta_{\mathrm{m}}}{\delta \mathrm{Q}^{\mathrm{n}}}
$$

3.Obtain new constraints: $\gamma \frac{\delta \hat{\mathscr{L}}}{\delta \mathrm{Q}}=0 ; \quad$ iteratively repeat until closure!

The easiest approach to quantization

[Faddeev \& Jackiw '92], [Jackiw '93] [Barcelos-Neto \& Wotzasek; 92-93], [Liao \& Huang '07], [Toms '15]
[Errasti Diez, M.K.M., '21]

- New, simple way to read off a partition function for the quantized system:

$$
Z=\int d \sigma e^{i \int_{M} d^{4} x \mathscr{L}} ; \quad d \sigma=\operatorname{det}(\Omega) \prod_{m} d\left[\mathrm{Q}^{m}\right]
$$

- Ready for analytical and numerical computations, keep in mind conclusions:

1. Not all non-linear massive ED versions can be quantized
2. Among those that can be quantized, degenerate behaviour may happen

- One exception: Non-linear QED (Born-Infeld) does not have degenerate behaviour [Bialyncki-Birula '83]

NLE on the lattice

[Sinclair,Kogut '05, Sinclair,Kogut '06]

- Outlined quantization procedure can be applied to any NL-extension of ED
- Preliminary results with Born Infeld action in four spacetime dimensions

$$
S=b^{2} \int d^{4} x\left(\sqrt{1+\frac{1}{2 b^{2}} F_{\mu \nu} F^{\mu \nu}+\frac{1}{16 b^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}}-1\right)
$$

- Simple Metropolis update [Sinclair,Kogut '05, Sinclair,Kogut '06]
- Compute Polyakov loop:

$$
W(x)=e^{i e \sum_{x_{0}} A_{0}\left(x_{0}, \vec{x}\right)-\frac{1}{V} \sum_{\vec{y}} A_{0}\left(x_{0}, \vec{y}\right)}
$$

(sign problem, large statistics needed)

- See [Sinclair,Kogut '21] and contribution \#73 at LATT22 [D. Sinclair Mon, 14:00]

Born Infeld Theory on the lattice

[Sinclair,Kogut '05, Sinclair,Kogut '21]

- Agreement with results in [Sinclair,Kogut '06] for small value of e on 8^{4} lattice
- Further noise reduction techniques needed for larger e
- Extension to other non-linear extensions of electrodynamics in progress

[Sinclair,Kogut '06]

[Errasti Diez, M.K.M., G. Pierini, in preparation]

Summary \& Outlook

- Many ways for NL extensions of Maxwell's electrodynamics: we have quantized all of them
- Safe to quantize certain extensions (incl. derivative self-interaction), under specific set of conditions
- Given partition function; Monte Carlo methods can be used to obtain predictions
- Two special cases explored on the lattice: BI and Proca (QEDm)
- Implementation of more general NLE in progress (relevant for cosmology, BSM physics, Schwinger effect, vacuum birefringence ...)

