Quantum chaos in supersymmetric Yang-Mills-like model

Pavel Buividovich (University of Liverpool)

Based on [Phys. Rev. D 106 (2022) 046001, ArXiv:2205.09704]

Why are we interested in quantum chaos?

- Classical dynamics of Yang-Mills theory is chaotic [Saviddy'1984]
- In the glasma regime, classical chaos/plasma instability can (partially) account for fast thermalization/hydrodynamization quark-gluon plasma [e.g. Kunihiro et al. ArXiv:1008.1156]
- How quantum effects affect classical chaotic dynamics?

Why are we interested in quantum chaos in gauge theories?

- Thermalization in supersymmetric gauge theory = formation of a black hole in a dual string theory (AdS/CFT)
- Super-Yang-Mills is a microscopic model of black hole dynamics
- Once a black hole is formed, how quickly it can "scramble" information?
 Black holes are "Fast scramblers", [Sekino, Susskind, 0808.2096]
- Equivalent: how small perturbations evolve in super-Yang-Mills theory?

At high temperatures: classical dynamics ...

Lyapunov instability and Poisson brackets

Lyapunov exponent:

$$\frac{\partial x_i(t)}{\partial x_i(0)} \sim e^{\lambda_L t}$$

Impossible to get the initial state from the final one!

In terms of Poisson brackets:

$$\frac{\partial x_i(t)}{\partial x_j(0)} = \{x_i(t), p_j(0)\} =$$

$$=\sum_{k}\frac{\partial x_{i}\left(t\right)}{\partial x_{k}\left(0\right)}\frac{\partial p_{j}\left(0\right)}{\partial p_{k}\left(0\right)}-\frac{\partial x_{i}\left(t\right)}{\partial p_{k}\left(0\right)}\frac{\partial p_{j}\left(0\right)}{\partial x_{k}\left(0\right)}$$

Averaging over an ensemble of initial conditions (thermal):

$$e^{2\lambda_L t} \sim \langle \{x_i(t), p_j(0)\}^2 \rangle$$

Quantum generalization: Out-of-Time-Order Correlators

$$e^{2\lambda_L t} \sim \langle \{x_i(t), p_j(0)\}^2 \rangle$$

$$\{x_i(t), p_j(0)\} \rightarrow -i \left[\hat{x}_i(t), \hat{p}_j(0)\right]$$

$$\langle \mathcal{O}(x,p) \rangle \to \operatorname{Tr}\left(\hat{\rho}\,\hat{\mathcal{O}}\right)$$

 $e^{2\lambda_L t} \sim -\text{Tr}\left(\hat{\rho}\left[\hat{\boldsymbol{x}_i}\left(t\right), \hat{\boldsymbol{p}_j}\left(0\right)\right]^2\right) =$

$$= 2\operatorname{Re}\operatorname{Tr}\left(\hat{\rho}\,\hat{p}_{j}\,(0)\hat{x}_{i}^{2}\,(t)\hat{p}_{j}\,(0)\right) -$$

$$-2\operatorname{Re}\operatorname{Tr}\left(\hat{\rho}\,\hat{x}_{i}\,(t)\hat{p}_{j}\,(0)\hat{x}_{i}\,(t)\hat{p}_{j}\,(0)\right)$$

Conventional thermal correlator

This part is not time-ordered (out-of-time-order)

Universal bound on chaos and AdS/CFT

Reasonable physical assumptions

Analyticity of OTOCs

 $\lambda_L \leq 2\pi T$

[Maldacena Shenker Stanford'15]

(QGP λ_L^{-1} ~0.1 fm/c)

Holographic models with <u>black hole</u> backgrounds saturate the bound **Sachdev-Ye-Kitaev (SYK)**:

$$\hat{H}_{SYK} = -\frac{1}{4!} \sum_{abcd} J_{abcd} \hat{\psi}_a \, \hat{\psi}_b \, \hat{\psi}_c \, \hat{\psi}_d$$

- Holographic dual to AdS₃ space
- Saturates the MSS bound at low T

BFSS Model: Classically chaotic system with a holographic dual

N=1 Supersymmetric Yang-Mills in D=1+9:

Reduce to a single point = BFSS matrix model

[Banks, Fischler, Shenker, Susskind'1997]

$$\hat{H}_{BFSS} = \frac{1}{2N} \operatorname{Tr} \hat{E}_{i}^{2} - \frac{N}{4} \operatorname{Tr} \left[\hat{A}_{i}, \hat{A}_{j} \right]^{2} + \frac{\sigma_{i}^{\alpha\beta}}{2} \operatorname{Tr} \left(\hat{\psi}_{\alpha} \left[\hat{A}_{i}, \hat{\psi}_{\beta} \right] \right)$$

N x N hermitian matrices

Majorana-Weyl fermions, N x N hermitian

- Dual to system of N D0 branes joined by open strings [Witten'96]
- A^{ii}_{μ} = D0 brane positions
- A^{ij}_{μ} = open string excitations [Similar model: talk by M. Hirasawa]

Phase diagram of BFSS model [Itzhaki et al., hep-th/9802042]

- [Berkowitz et al., 1606.04951]
 agreement with black D0-brane
 down to lowest temperature
 (N→∞ at fixed T)
- [Bergner et al., 2110.01312]
 signatures of M-theory phase in metastable states
- Both phases are "black" in the dual theory and feature event horizons
- MSS bound at low T?

What mechanism is responsible for quantum chaos at low T?

Of course, real-time dynamics is very difficult ...

"Minimal models" of Yang-Mills and super-Yang-Mills dynamics

$$\hat{H}_{QM} = \frac{1}{2N} \operatorname{Tr} \hat{E}_i^2 - \frac{N}{4} \operatorname{Tr} \left[\hat{A}_i, \hat{A}_j \right]^2$$

SU(2), zero angular momentum

$$\hat{H}_B \sim \hat{p}_1^2 + \hat{p}_2^2 + \hat{x}_1^2 \, \hat{x}_2^2$$

$$\hat{H}_{SYM} = \hat{H}_{YM} +$$

$$+ \int \frac{i\sigma_{\alpha\beta}^{k}}{2} \operatorname{Tr}\left(\hat{\psi}_{\alpha} \mathcal{D}_{k} \hat{\psi}_{\beta}\right) + \dots$$

$$\hat{H}_S = \hat{H}_B + \hat{x}_1 \, \sigma_1 + \hat{x}_2 \, \sigma_2$$

[de Wit, M. Luscher, and H. Nicolai'1984]

 Pauli matrices act on a 2-dim fermionic Hilbert space

"Minimal model" of a supersymmetric matrix model

Minimal Yang-Mills-like Hamiltonian:

$$\hat{H}_B = \hat{p}_1^2 + \hat{p}_2^2 + \hat{x}_1^2 \,\hat{x}_2^2$$

Pauli matrices are "fermionic" operators

$$\hat{H}_S = \hat{H}_B + \hat{x}_1 \, \sigma_1 + \hat{x}_2 \, \sigma_2$$

Supersymmetry generator: $\hat{H}_S = \hat{Q}^2$

$$\hat{Q} = \hat{x}_1 \hat{x}_2 \otimes \sigma_3 + \hat{p}_1 \otimes \sigma_1 + \hat{p}_2 \otimes \sigma_2$$

(Flat directions remain flat due to SUSY)

Numerical method

Work in the truncated basis of harmonic oscillator states

$$\Psi_{k_1,k_2}(x_1,x_2) = \psi_{k_1}(x_1) \ \psi_{k_2}(x_2)$$

$$\psi_k(x) = \frac{1}{\sqrt{2^k \, k! \, \sqrt{\pi L}}} \exp\left(-\frac{x^2}{2L^2}\right) H_k(k, x/L)$$

- Polynomial Hamiltonians
- sparse matrices
- Truncated at $k_1 + k_2 \le 2 M$
- M defines both UV and IR cutoffs (size $\sim M^{1/2}$)
- L tuned to min energy gap

Out of Time Order Correlators – moderately high temperature, T=5

Agreement with classical dynamics ^T observed only for the supersymmetric Hamiltonian

OTOCs – medium temperature, T = 1

OTOC – T=0.2 (low-T), bosonic

OTOCs – low temperature, T = 0.2

How to estimate λ_{l}

- Exponential OTOC growth is not clearly defined (no large N)
- Also free hamiltonians with IR cutoff exhibit some OTOC growth careful extrapolation to infinite cutoff
- Estimate an upper bound on λ_L from trajectory divergence rate

$$\frac{\lambda_L}{\lambda_L} = \max_t \frac{1}{2} \frac{d}{dt} \log \left(\frac{C(t)}{t} \right)$$

Summary of estimates of $\lambda_{L}(t)$

Larger IR cutoff (M) = less transparency

Global energy spectrum

- Bosonic: gapped spectrum
- Supersymmetric: narrowly spaced low-energy levels
- Continuous spectrum in the limit of infinite IR cutoff

Low-energy wave functions for the SUSY model

- Effectively one-dimensional states at low energies
- Parity broken due to the choice of the basis

Statistics of energy levels

- Quantum chaos: universal energy level fluctuations [Wigner, Bohigas–Giannoni–Schmit]
- Counterpart of classical chaotic dynamics
- Described by random matrix theory (Gaussian random matrices)
- Our matrices are real Gaussian Orthogonal Ensemble (GOE)
- Energy spectrum needs deflation in practice
- Convenient diagnostic tool: r-ratios

$$\Delta E_i = E_{i+1} - E_i$$

$$r_i = \frac{\min(\Delta E_{i-1}, \Delta E_i)}{\max(\Delta E_{i-1}, \Delta E_i)}$$

Statistics of energy levels: Bosonic model

Statistics of energy levels: SUSY model

Low-energy states are very regular

ArXiv:1312.1179

Discussion and conclusions

- Two parts of the spectrum for SYM-like model:
 - Chaotic high-energy bulk = classical chaos
 - Regular low-energy, low-dimensional states, absent in the bosonic model
- Sharp change between the two regimes
- Similar to Black D0 branes Schwarzschild black hole transition? Cf. [Bergner et al., 2110.01312]
- OTOCs of the SUSY system grow down to lowest T, $\lambda_L \sim T$
- Bosonic system at low T only exhibits oscillations
- At high T, classical-quantum correspondence for OTOCs only for the SUSY system

Outlook

- Simple SUSY/bosonic models can serve as a testbed for other real-time evolution methods (quantum computers?)
- Can we construct an effective model of low-energy, low-dimensional states that saturate OTOC growth at low T?
- In SYK model: zero modes due to approx.
 reparameterization invariance, broken down to SL(2, R)
 [Maldacena, Stanford'1604.07818]
- What is the holographic dual interpretation of these states?

Backup slides

Estimates of $\lambda_L(t)$ – high-temperature regime

- Quite different behaviors for SUSY, Bosonic and Free
- Only SUSY exhibits some agreement with classics

Estimates of $\lambda_{l}(t)$ – very-high-temperature regime

- SUSY, bosonic and free exhibit similar early-time features
- SUSY still exhibits some agreement with classics

Estimates of $\lambda_{l}(t)$ – SUSY, low-temperature regime

- Two characteristic maxima and a plateau
- Heights decrease with M

Extrapolating dominant low-temperature maxima to $M \rightarrow +\infty$

- Different M dependencies
- $\lambda_{max}(M) = A + B/\sqrt{M},$ Two extrapolation models:
- Consistently higher extrapolations for SUSY