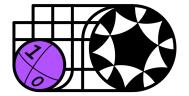
Numerical studies on the finite-temperature CP restoration in 4D SU(N) gauge theory at $\theta = \pi$

Akira Matsumoto (RIKEN iTHEMS)

collaboration : Kohta Hatakeyama^(KEK), Mitsuaki Hirasawa^(INFN), Masazumi Honda^(YITP, iTHEMS), Jun Nishimura^(KEK, SOKENDAI), Atis Yosprakob^(SOKENDAI)

LATTICE 2022 August 8, 2022



Gauge theory with a theta term

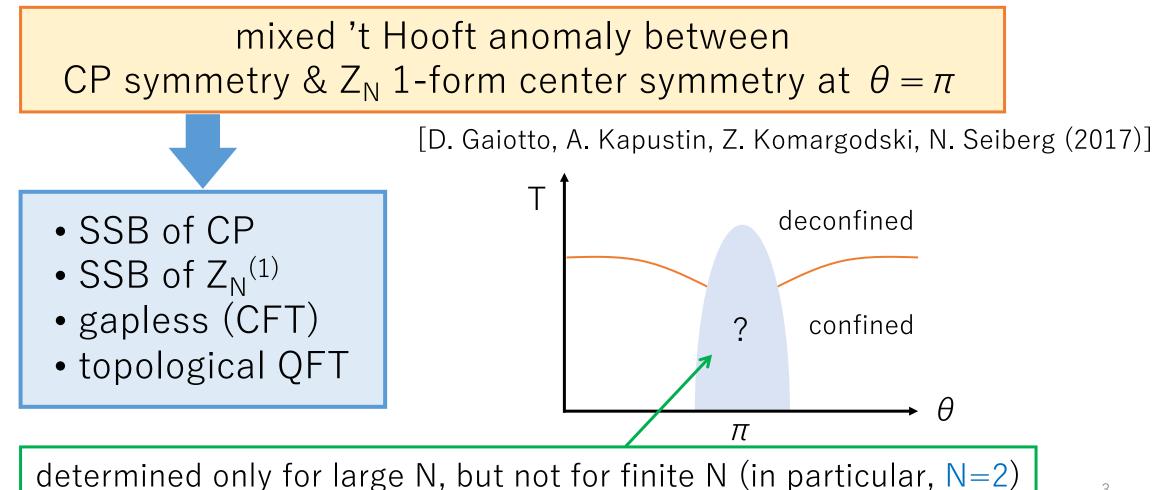
 $\Rightarrow \theta$ term : topological nature of the gauge theory, nonperturbative

$$S_{\theta} = -i\theta Q = -\frac{i\theta}{32\pi^2} \int d^4x \,\epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}(F_{\mu\nu}F_{\rho\sigma}) \qquad Z = \int dA \,e^{-S_g + i\theta Q}$$

- topological charge : $Q \in \mathbb{Z}$
- periodicity : $\theta \rightarrow \theta + 2\pi$
- CP $(\theta \rightarrow -\theta)$ exists not only at $\theta = 0$ but also $\theta = \pi$
- Possible phase structures at $\theta = \pi$ are constrained by 't Hooft anomaly matching.

Prediction by 't Hooft anomaly matching

rightarrow 't Hooft anomaly matching for 4D SU(N) gauge theory \rightarrow constrain the phase structure at $\theta = \pi$



Phase structure of 4D SU(2) gauge theory

Consider possible (θ , T) phase diagrams for N=2

- two critical temperatures at $\theta = \pi$:
 - (1) CP is broken at low temperature T < T_{CP}

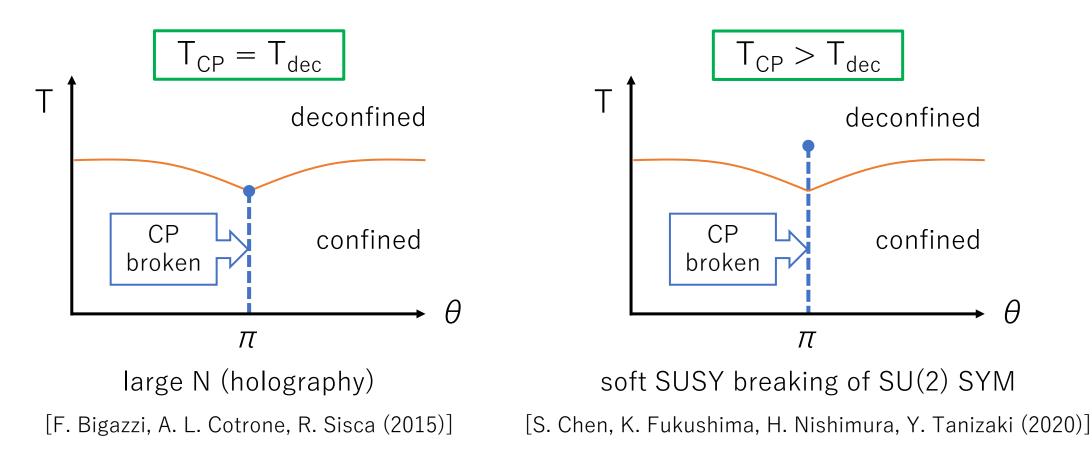
indication of CP breaking at T=0 by subvolume method [R. Kitano, R. Matsudo, N. Yamada, M. Yamazaki (2021)]

- (2) Z₂ is broken at high temperature T > T_{dec} (deconfinement)
 [D. J. Gross, R. D. Pisarski, L. G. Yaffe (1981)]
 [N. Weiss (1981)]
- constraint by the anomaly matching :

"CP cannot be restored in the confined phase" \rightarrow T_{CP} \geq T_{dec}

T_{dec} VS T_{CP}

rightarrow examples of possible (heta, T) phase diagram



Which diagram is realized for N=2?

Short summary

- Direct lattice simulation at $\theta = \pi$ is hard due to the sign problem.
- The crucial point of our work :

CP breaking/restoration can be probed by the tail of topological charge distribution at $\theta = 0$!

- We find a sudden change of the tail by simulating the theory at imaginary $\,\theta\,$ (no sign problem).

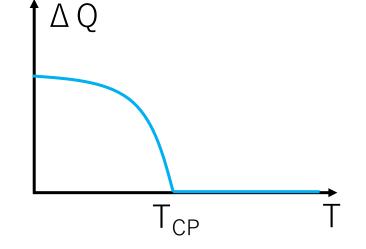
 \rightarrow Our results suggest T_{CP} > T_{dec} for SU(2).

Identifying CP restoration

- Q is a CP odd operator
 - → If CP is spontaneously broken at $\theta = \pi$, $\langle Q \rangle$ is discontinuous there.

$$\Delta Q = |\langle Q \rangle_{\theta = \pi - \epsilon} - \langle Q \rangle_{\theta = \pi + \epsilon} | \begin{cases} > 0 & : \text{ CP broken} \\ = 0 & : \text{ CP restored} \end{cases}$$

• T_{CP} can be regarded as a temperature where $\Delta\,Q$ vanishes.



 \rightarrow Can we probe it without simulations at $\theta = \pi$?

$\langle Q \rangle$ and the topological charge distribution

• We consider the topological charge distribution at $\theta = 0$.

$$\rho(q) = \frac{1}{Z_0} \int dU \,\delta(q-Q) e^{-S_g} = \frac{1}{Z_0} \int \frac{d\theta}{2\pi} \,e^{-i\theta q} Z_\theta$$

= Fourier transform of the partition function

$$Z_{\theta} = \int dU \, e^{-S_g + i\theta Q} = Z_0 \int dq \, e^{i\theta q} \rho(q)$$

- θ dependence of $\langle Q \rangle$ is completely determined by $\rho \left({\bf q} \right)$

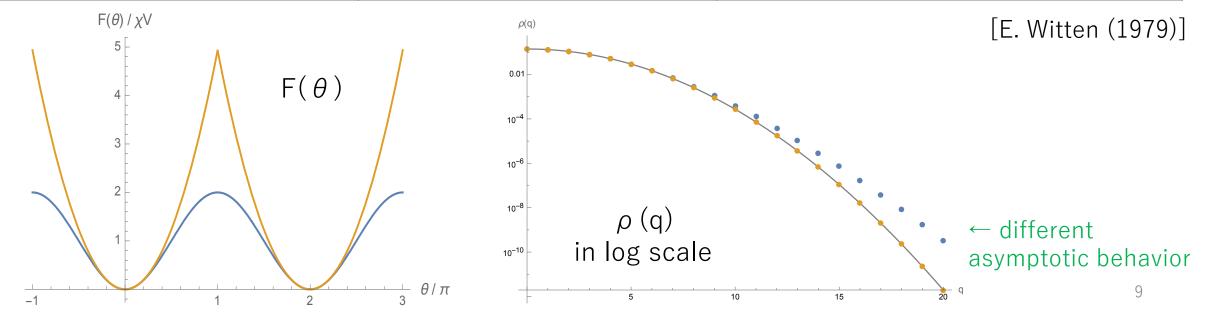
$$\langle Q \rangle = -i \frac{\partial}{\partial \theta} \log Z_{\theta} = \frac{\int dq \, q e^{i\theta q} \rho(q)}{\int dq \, e^{i\theta q} \rho(q)}$$

• If $\Delta Q=0$ or not depends on $\rho(q) \rightarrow \rho(q)$ changes suddenly at T_{CP}

Comparison of simplified models

• Consider two different types of free energy $F(\theta) = -\log Z_{\theta}$

model	$F(\theta)$	CP at $\theta = \pi$
instanton gas (high T)	$\chi_0 V(1-\cos\theta)$	restored $F'(\pi + \epsilon) = F'(\pi - \epsilon)$
large N (low T)	$\frac{1}{2}\chi_0 V \min_n (\theta - 2\pi n)^2$	broken $F'(\pi + \epsilon) \neq F'(\pi - \epsilon)$



Imaginary θ as a probe

• ΔQ (CP at $\theta = \pi$) seems to be related to the asymptotic behavior of the distribution ρ (q).

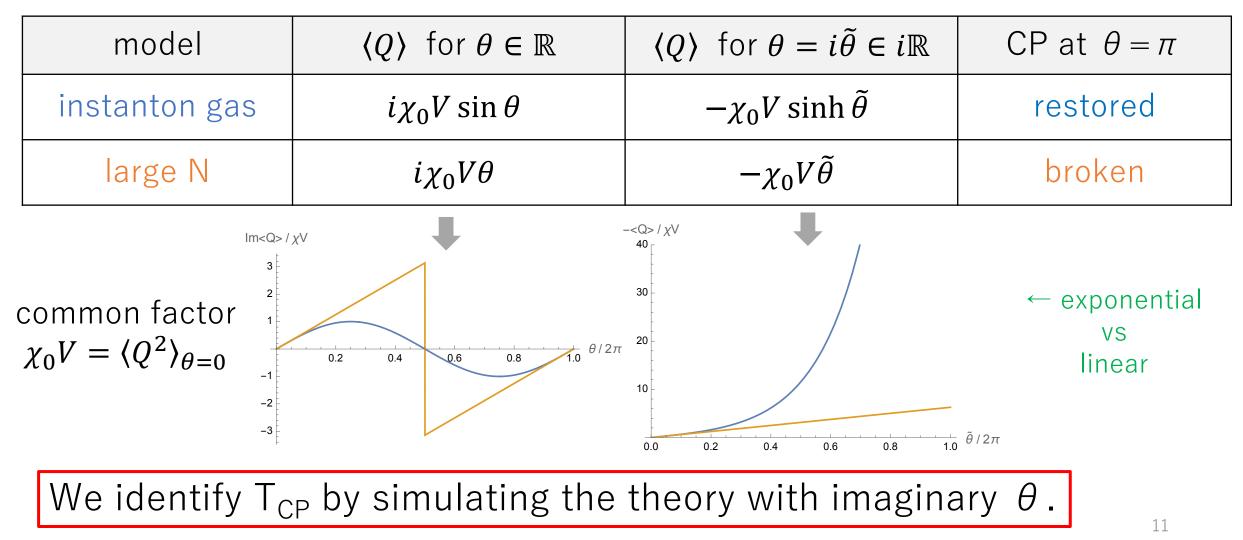
$$\rho(q) \sim \begin{cases} \exp\left(-q\log\frac{2q}{\chi_0 V}\right) & : \text{ instanton} & \longleftrightarrow & \Delta Q = 0\\ \exp\left(-\frac{q^2}{2\chi_0 V}\right) & : \text{ large N} & \longleftrightarrow & \Delta Q \neq 0 \end{cases}$$

• We can observe the tail of $\rho(q)$ through $\langle Q \rangle$ at imaginary θ because of the $e^{-\tilde{\theta}q}$ factor.

$$\langle Q \rangle = \frac{\int dq \, q e^{i\theta q} \rho(q)}{\int dq \, e^{i\theta q} \rho(q)} \quad \Longrightarrow \quad \frac{\int dq \, q e^{-\tilde{\theta} q} \rho(q)}{\int dq \, e^{-\tilde{\theta} q} \rho(q)}$$

Comparison of simplified models

• $\langle Q \rangle$ at imaginary θ reflects the difference of ρ (q) clearly.



Lattice regularization

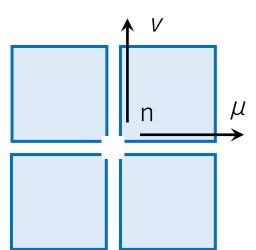
• gauge action : Wilson action

$$S_{\beta} = \frac{\beta}{2N} \sum_{n} \sum_{\mu \neq \nu} \operatorname{Tr} P_{n}^{\mu\nu} \qquad P_{n}^{\mu\nu} = U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\nu},\mu}^{-1} U_{n,\nu}^{-1} \qquad \beta = \frac{4}{g^{2}}$$

- topological charge :
 - clover leaf definition[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]+ stout smearing[C. Morningstar, M. Peardon (2004)]

$$Q_{\text{clov}} = -\frac{1}{32\pi^2} \sum_{n} \frac{1}{16} \sum_{\mu,\nu,\rho,\sigma=1}^{4} \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left(\bar{P}_n^{\mu\nu} \bar{P}_n^{\rho\sigma} \right)$$

$$\bar{P}_{n}^{\mu\nu} = P_{n}^{\mu\nu} - P_{n}^{-\mu\nu} - P_{n}^{\mu-\nu} + P_{n}^{-\mu-\nu}$$

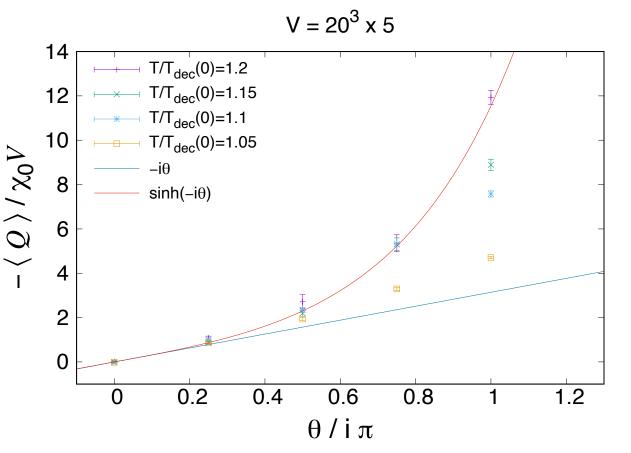


Result of HMC for imaginary θ

imaginary θ dependence of $\langle Q \rangle$ (normalized by $\chi_0 V = \langle Q^2 \rangle_{\theta=0}$)

• transition from large-N-low-T (linear) behavior to instanton gas model (sinh) around $0.9 < T/T_{dec(\theta=0)} < 1.2$

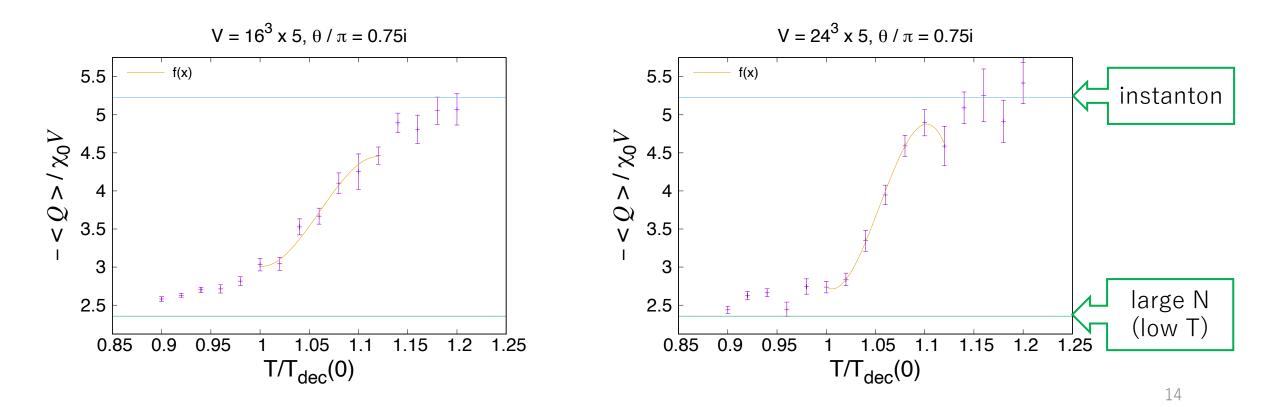
• T_{CP} can be identified by sharp jump of $\langle Q \rangle / \chi_0 V$ at sufficiently large imaginary θ .



Determination of T_{CP}

temperature dependence of $\langle Q \rangle / \chi_0 V$ for the fixed θ

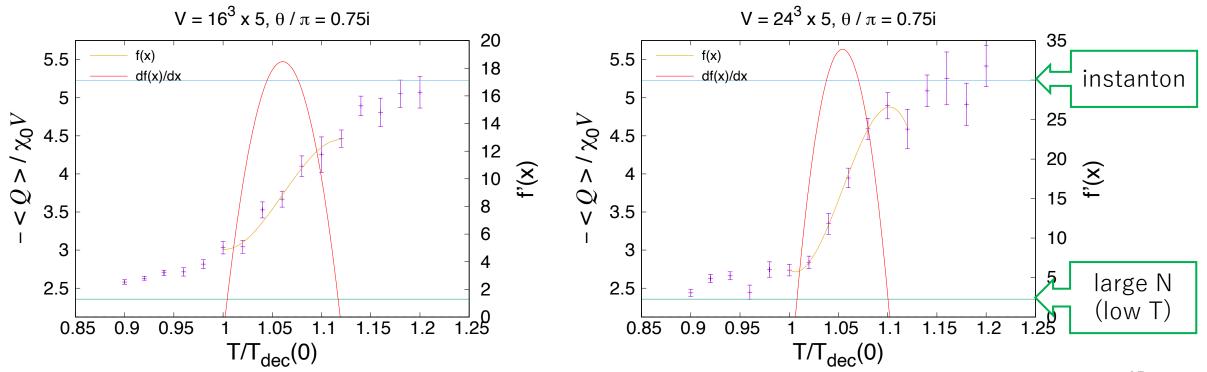
• fitting by $f(x) = ax^3 + bx^2 + cx + d$



Determination of T_{CP}

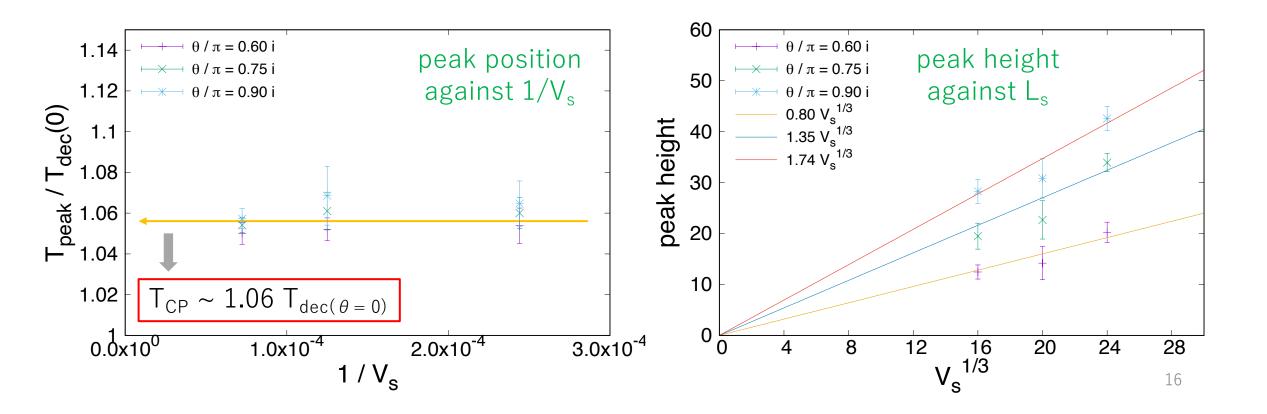
temperature dependence of $\langle Q \rangle / \chi_0 V$ for the fixed θ

- fitting by $f(x) = ax^3 + bx^2 + cx + d$
 - \rightarrow T_{CP} is identified as a peak position of the derivative f'(x).



Finite volume effect

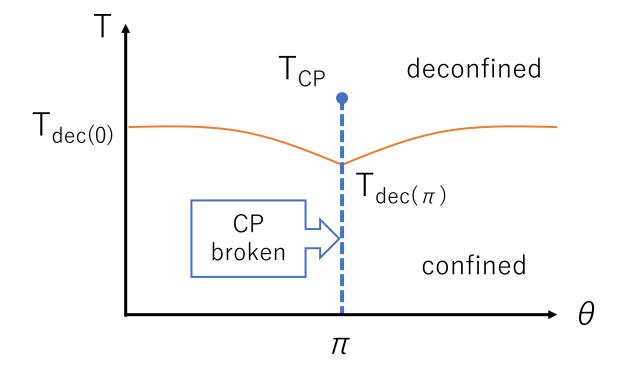
- The peak position T_{peak} should converge to the unique T_{CP} . (The finite volume effect is not significant already.)
- The peak height grows $\sim V_s^{1/3} \rightarrow 2nd$ order transition or higher



Conjectured phase diagram

- Our results indicates $T_{CP} \sim 1.06 T_{dec(\theta=0)}$.
- If $T_{dec(\theta = \pi)}$ is lower than $T_{dec(\theta = 0)}$ as expected in SU(3) case,

$$\rightarrow T_{CP} > T_{dec(\theta = 0)} > T_{dec(\theta = \pi)}$$



$$\frac{T_{\rm dec}(\theta)}{T_{\rm dec}(0)} \simeq 1 - R_2 \,\theta^2$$

cf.) R₂ ~ 0.018 for SU(3) [M. D'Elia, F. Negro (2013)] [N. Otake, N. Yamada (2022)]

Summary

- The CP breaking/restoration at $\theta = \pi$ can be seen as a sudden change of the tail of topological charge distribution at $\theta = 0$.
- We can see it by $\langle Q \rangle / \chi_0 V$ at sufficiently large imaginary θ .
- We obtained $T_{CP} \sim 1.06 T_{dec(\theta = 0)}$. (Note that the sign problem is severest at $\theta = \pi$.)
- This is interesting from the viewpoint of the 't Hooft anomaly matching <u>condition</u> in 4D SU(N) gauge theory. $\rightarrow T_{CP} \ge T_{dec}$
- Our results suggest $T_{CP} > T_{dec}$ for SU(2) unlike large N result ($T_{CP} = T_{dec}$).
- A similar study for SU(3) is ongoing.

 $(T_{CP} = T_{dec(\theta = \pi)} < T_{dec(\theta = 0)}$ is expected for SU(3))

Thank you!

Stout smearing

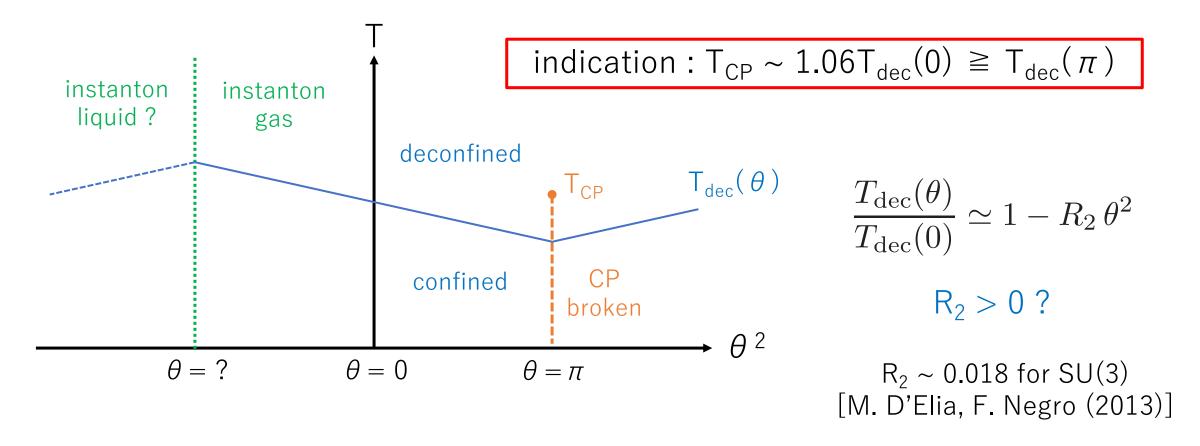
- The topological charge on the lattice is contaminated by UV fluctuation.
- \rightarrow Recover the topological property by smoothing the gauge field $\cancel{2}$ stout smearing

$$U_{n,\mu}^{(k+1)} = e^{iY_{n,\mu}} U_{n,\mu}^{(k)} \qquad iY_{n,\mu} = -\frac{1}{2} \left(J_{n,\mu} - \frac{1}{2} \text{Tr} \left[J_{n,\mu} \right] \right)$$
$$J_{n,\mu} = \sum_{\nu(\neq\mu)} \rho_{\mu\nu} \left[U_{n,\mu} \left(\checkmark + \checkmark \right) - \left(\uparrow + \checkmark \right) U_{n,\mu}^{-1} \right]$$

 $ho_{\mu
u}$: weight of smearing

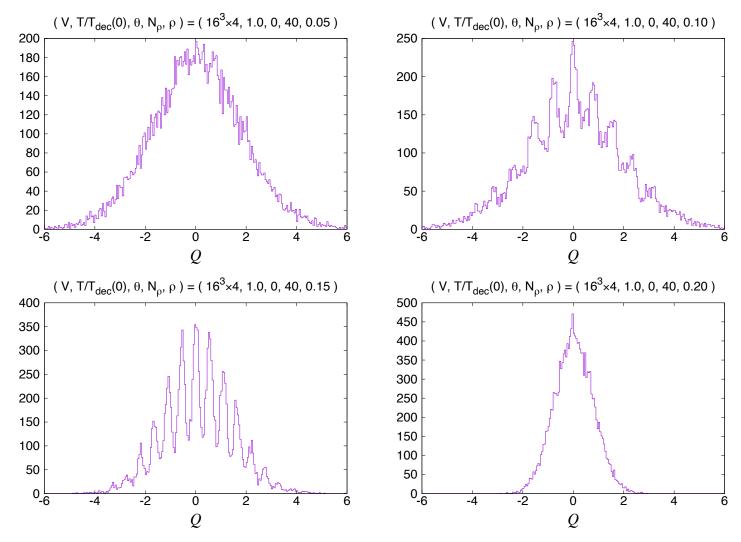
Conjectured phase diagram

• (θ^2 , T) phase diagram including both real & imaginary θ



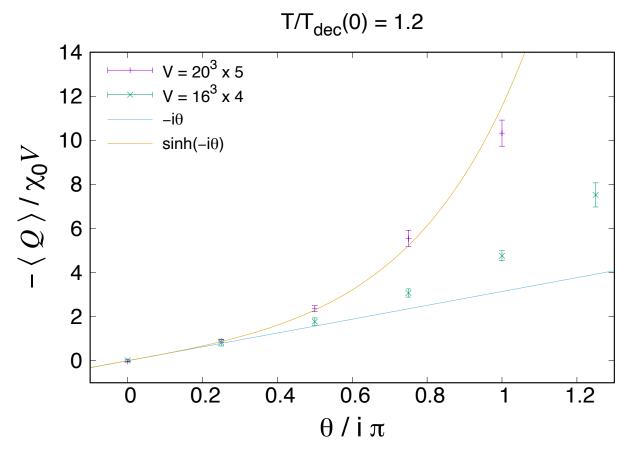
Effect of the smearing

distribution of Q
 for various ρ



Finite spacing effect

- Increase β with fixing the physical volume and temperature
- $T/T_{dec}(0) = 1.2$
- V = $16^3 \times 4$, $20^3 \times 5$
- The results approaches instanton gas behavior on the finer lattice.



Naive method to treat the complex action

(1) Reweighting method

• Treat the phase of Boltzmann weight as a part of the observable and use the absolute value as a probability

$$\langle \mathcal{O} \rangle_S = \frac{\langle \mathcal{O} e^{-i \mathrm{Im}S} \rangle_{\mathrm{Re}S}}{\langle e^{-i \mathrm{Im}S} \rangle_{\mathrm{Re}S}}$$

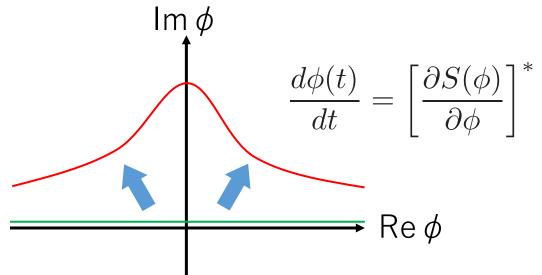
- oscillation of phase \rightarrow numerator and denominator $\sim e^{-O(N_{dof})}$ \rightarrow It is hard to evaluate "0/0" due to the statistical error.
- valid only when Im S is sufficiently small

Improvement of the reweighting

(2) Lefschetz thimble method (LTM) [E. Witten (2010)]

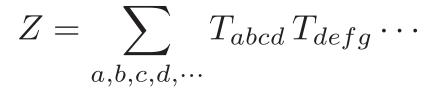
- Deform the integration contour from \mathbb{R} to \mathbb{C} by the flow equation. \rightarrow oscillation of Boltzmann weight is suppressed
- Since the calculation cast grows O(N $_{\rm dof}{}^3)$, this method is limited to lower dimensions.

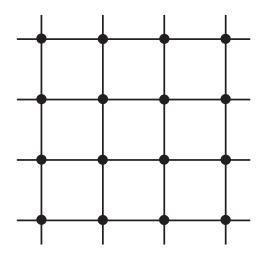
※ Recently, a new techniqueto improve both ergodicity andcalculation cost is proposed.



Deterministic approach

- (3) Tensor renormalization group (TRG) [M. Levin, C. P. Nave (2007)]
- Evaluate the partition function represented by a tensor network.
- deterministic calculation
 - \rightarrow no statistical error
- calculation cost ∝log(volume)
- Since the rank of the tensor becomes higher, the calculation cost grows rapidly in D > 2.

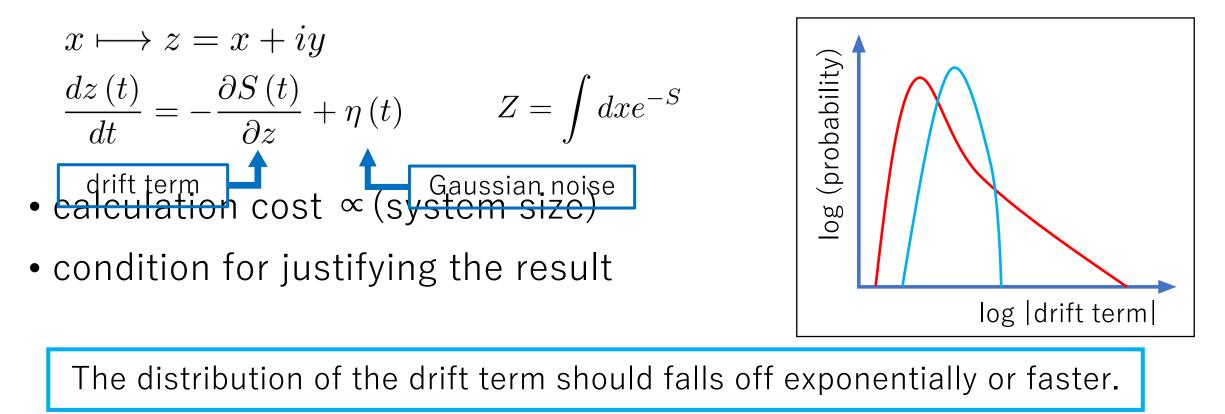




Our approach

(4) Complex Langevin method (CLM) [G. Parisi (1983)] [J. R. Klauder (1983)]

• fictitious time evolution of dynamical variables by Langevin eq.



[K. Nagata, J. Nishimura, S. Shimasaki (2016)] 27