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Introduction

Consider the collapse of a free, massless scalar field
to a black hole.

Semiclassical gravity predicts Hawking radiation for
late times.

Hawking [1]

One would expect this calculation to be very
messy and to depend on the detailed nature of the
gravitational collapse. However, as I shall show,
one can derive an asymptotic form [...] which
depends only on the surface gravity of the
resulting black hole.

Can we numerically determine the field evolution
during the collapse phase including back reaction?

[1] S. W. Hawking, “Particle Creation by Black Holes,” Com-
mun. Math. Phys. 43 (1975), 199-220
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Introduction

[1] M. W. Choptuik, “Universality and scaling in gravitational
collapse of a massless scalar field,” Phys. Rev. Lett. 70 (1993),
9-12

Semiclassical Einstein equation:

Rµν −
1

2
Rgµν = 〈ψ | Tµν | ψ〉

Choose state | ψ〉 such that:

Close to a classical state → Coherent
state.

Expectation value is spherically
symmetric.

Choose spherical symmetric coordinate system
[1]

gµν =

α
2(t, r)

−a2(t, r)
−r 2

−r 2 cos2 θ
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Scalar field decomposition

l = 0:
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Hamiltonian of the field can be written as

H =
∞∑
l=0

(2l + 1)

(
αa0

aα0
ΠlΠ

†
l + φ†l

√
aα0

αa0
K

√
aα0

αa0
φl

)
with

K = qTq +
l(l + 1)

r2
α2

where

q =

√
α

a
r∂r

√
α

a

1

r

Perform SVD:

K = Vω2V T

V : Mode functions.

ω: Mode frequency
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Scalar field quantization

l = 0:
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Write Hamiltonian as

H = b+Wrb
†
+ + b†−Wrb− + b+Xrb− + b†−Xrb

†
+.

b†±/b± are the creation/annihilation operators
with frequencies ω.

b+(t) =
1
√

2
(bu(t) + bv (t))

b†−(t) =
1
√

2
(bu(t)− bv (t))

b−(t) =
1
√

2
(b†u (t)− b†v (t))

b†+(t) =
1
√

2
(b†u (t) + b†v (t))

bu(t) =
1√
2

(b+u(t) + b†i u
∗(t))V

√
ω

bu(t) =
1√
2

(b+v(t)− b†−v
∗(t))V

√
ω−1

→ Determine time evolution of u(t) and v(t).
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Scalar field time evolution

Initialization:

u(0) =
1√
ω
V T and v(0) =

√
ωV T

As long as the metric is constant, the time evolution can be solved exactly

(
u(t + ∆t) v(t + ∆t)

)
=
(
u(t) v(t)

)
exp

(
−i

(
0

√
aα0

αa0
K
√

aα0

αa0

αa0

aα0
0

)
∆t

)

Exponential can be explicitly evaluated by using SVD K = Vω2V T .

Time evolution is a Bogolyubov transformation.
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Metric evolution

gµν =


α̂2 d

r
− r

d
−r2

−r2 cos2 θ

 ln′(α̂) = 〈ψ | h0
r | ψ〉

d ′ + dh0
r = 1− r〈ψ | mr | ψ〉

h0
r and mr are field operators:

〈h0
r 〉ψ =

1

d0â0

(
|lur |2 + |lvr |2 +

∞∑
l=0

(2l + 1)
(

(v†l vl)r r + (q0u†l ulq
0T )r r)

))

〈mr 〉ψ =
d0α̂0

r2

∑
l=0∞

(2l + 1)

(
l(l + 1)

r2
+ M2

)
(u†l ul)rr

|lur |2 + |lvr |2: Classical contribution

ul , vl : Coefficient of creation and anihilation operators

q0 =
√
α̂dr∂r

√
α̂dr−3 Discretized “derivative”
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Combined evolution

evolve field
from    to

find consitent
metric at   

evolve field
with metric at  

from    to
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l = 0 approximation

class semi

Consider only the l = 0 mo-
des.

→ Divergences of 〈Tµν〉ψ
can be cancelled by normal
ordering

Back reaction effects can be
included.

Horizon seems to form ear-
lier due to quantum effects.
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Including l > 0 modes

Classically, l > 0 modes break spherical symmetry.

In the quantum case, 〈ψ | Tµν | ψ〉 can be sphe-
rically symmetric even if l > 0 modes are excited.

→ These modes must be included.

H =
∞∑
l=0

(2l + 1)

(
αa0

aα0
ΠlΠ

†
l + φ†l

√
aα0

αa0
K

√
aα0

αa0
φl

)
with

K = qTq +
l(l + 1)

r2
α2

Additional divergence due to large l modes.
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Divergence structure

Energy momentum tensor in curved space time can be calculated from the coincidence limit of
the two-point function G (x , x ′).

For well behaved Hadamard states | ψ〉, the divergence structure is [1]

lim
x′→x
〈ψ | G (x , x ′) | ψ〉 =

u(x , x ′)

σ(x , x ′)
+ v(x , x ′) lnσ(x , x ′) + w(x , x ′)

Here, σ(x , x ′) is the geodesic distance between x and x ′ and u(x , x ′), v(x , x ′) are
state-independent function that depend only on the metric and w(x , x ′) is regular.

How does that translate to the sum of angular l modes?

Can one use a 1/l expansion to relate them? → Work in progress.

[1] S. A. Fulling, M. Sweeny and R. M. Wald, “Singularity Structure of the Two Point Function in Quantum Field Theory in
Curved Space-Time,” Commun. Math. Phys. 63 (1978), 257-264
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Including l > 0 modes

4 6 8 10
r

0.0

2.5

5.0

7.5
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15.0

17.5

20.0

h0

l = 0
l = 10
l = 50

Solid lines: h0 without subtraction.

Dashed line: Normal ordering at t = 0.

Dotted line: Instantaneous normal ordering (Adiaba-
tic approximation)

Approaches:

Normal ordering

Point splitting in θ direction [1]

Subtraction of adiabtic time evolution

Subtracting the evolution with K = l(l+1)
r2 α2

[1] A. Levi and A. Ori, “Mode-sum regularization of
〈
φ2
〉

in the
angular-splitting method,” Phys. Rev. D 94 (2016) no.4, 044054 [ar-
Xiv:1606.08451 [gr-qc]].
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Pauli-Villars fields

pr
el
im
in
ar
y

As suggested by [1], using
Pauli-Villars fields with al-
ternating signs and masses

m2
2 + m2

4 = m2
1 + m2

3 + m2
5

m4
2 + m4

4 = m4
1 + m4

3 + m4
5

removes divergences for fini-
te values of the masses.

Left side: m1 = 1.

[1] B. Berczi, P. M. Saffin and
S. Y. Zhou, “Gravitational collap-
se of quantum fields and Chop-
tuik scaling,” JHEP 02 (2022),
183 doi:10.1007/JHEP02(2022)183
[arXiv:2111.11400 [hep-th]].
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Conclusion

Free scalar field evolution can be solved exactly in a static
metric.

In varying metric a leap-frog-like algorithm allows to determine
the evolution.

In the l = 0 approximation, the back reaction can be calculated.

Including higher l modes is work in progress, preliminary results
with Pauli-Villars regularization.

Thank you!
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