Translating topological benefits in very cold master-field simulations

Mattia Bruno, Marco Cè, Anthony Francis, Jeremy Green, Max Hansen, Savvas Zafeiropoulos

Trinity College Dublin

The 39th International Symposium on Lattice Field Theory (Lattice 2022)

Bonn, 08.08.2022

Preliminary

Precision lattice simulations

- Lattice QCD is entering a new precision era. And, the results are impacting in some of the most interesting areas of particle physics.
- One example among many: the BMW result on a^{HLO}_μ with an accuracy that rivals current phenomenological estimates.

Successes like this have been possible due to:

- Improved theoretical tools. TMR+bounding,arxiv[1107.4388, 1306.2532, 1305.5878, 1512.09054, 1612.02364]
- Gauge configurations that enable controlled extrapolations and error estimates for:
 - chiral / quark mass effects
 - o finite size / volume effects
 - o discretisation effects and continuum limit

With a good set of configurations precision becomes accessible.

- g-2: Example where continuum limit is (now) the main difficulty
- Spacing window: Commonly $0.06 \lesssim a \lesssim 0.15$ fm (some field)
- Solution: Generate more ensembles especially at finer lattice spacings
- But: As ↓ a the tunneling probability to a new topological sector drops.
 ⇒ topology freezes, inducing ~ Q/V contamination of observables.
- Critical slowing down: $\uparrow \tau_Q$ increases to a level that generating an update becomes unrealistic. (In addition to larger V for $L \gtrsim 3 \text{fm}$ and $m_{\pi}L \ge 4$)

(some exceptions, but not many)

A new way of looking at sampling: Master-field simulations Among other ideas to address the topological freezing problem, one path has led to a new look at sampling:

Change our perspective of building $\langle ... \rangle$ via averages over MC time histories into one in which we understand the same process as a translational averaging over locally de-correlated regions $\langle\!\langle ... \rangle\!\rangle$:

$$\langle\!\langle O(x) \rangle\!\rangle = rac{1}{V} \sum_{z} O(x+z), \quad \langle O(x) \rangle = \langle\!\langle O(x) \rangle\!\rangle + \mathcal{O}(V^{-1/2})$$

- Extreme (N=1): $\langle ... \rangle$ = averaging the local fluctuations in this one master-field.
- The single value of Q becomes irrelevant as corrections are $\sim 1/V$ suppressed provided the volume is large enough.
- Uses the result that corrections due to topology typically go as

$$\sim \frac{Q}{L^3 T}$$

*arxiv[hep-lat/0302005], arxiv[0707.0396]

A master-field variation: the long-T approach

MF regime is reached through scaling the volume, this is true in particular also via

$$L = L_{trad}, T \gg T_{trad} \rightarrow \text{long-T}$$
 approach

Motivations:

 $\circ\,$ In MF position space very attractive* - but not always optimal for some obs.

*Marco Cè, Thu. 11.08., 11:50; *John Bulava, Tue. 9.08., 9:20

- For spectroscopy, we commonly exploit and use as tools:
 - sparseness of the spectrum, finite volume formalism where ideally $m_{\pi}L \in [4:6]$
 - translation invariance for boosting statistics, small volumes for EV evaluation

 \rightarrow especially important for distillation

long-T approach: aims to get the best of both worlds and to open a way towards finer a[fm] without giving up on current, advanced, spectroscopy methods.

Excursion: Simulations with open boundary conditions

Open boundary conditions in time elegantly solve the topology freezing problem.

Replace anti-periodic boundary conditions in time
 Topology can now flow in/out in the T-direction
 But: Boundary effects affect measurements

Price: loss of time translation invariance (and T > 0 sims)

- In principle, OBC's solve the freezing problem.
- $\circ\,$ In practice, measurements only in the central region.
- There topology evolves more slowly and some observables can still be affected. (will see one later on)

At the same time:

- Calculations in hadron spectroscopy rely (heavily) on translational invariance to increase statistical precision.
- Losing translational invariance can seem a high price.

(especially on the analysis side for some obs.)

One more motivation: Find paths without losing time translation invariance.

Towards the first long-T master-fields

• Configurations are generated using Stabilized Wilson Fermions

 \rightarrow SMD update algorithm, supremum norm, quad precision arithmetic, ...

 \rightarrow exponentiated Clover action

- $\circ \ \ SWF make simulations safe for very large volumes. *Patrick Fritzsch, Sat. 13.08., 9:20$ \rightarrow non-invertibility of Clover term is avoided (pathology in WCF)
- $\circ~$ To reach long T's we use an upfolding strategy with aperiodic extensions.

Gene	rated configurat	ions				*generated on 3	Irene Jolliot Curie	of TPC
	$eta/a[fm]/\phi_4$	L	Т	N _{cfg}	BC's	Q	$V_{rel} = \frac{V}{V_{96}}$	
	4.1/0.055/1.17	48	96	488	Р	1.3(2)	1	
			384	101	Р	3.0(5)	4	
			1152	94	Р	-8(1)	12	
			2304	38	Р	-50(1)	24	
			2304	36	Р	-12(2)	24	
	\rightarrow		96	495	0	-1.0(3)*	1	

 \leadsto definition of \bar{Q} with OBC's not clean

*arxiv[1911.04533]

- \circ SU(3) flavor symmetric point, $\phi_4 = 1.115 \rightsquigarrow m_\pi = m_K = 412 {
 m MeV}$
- \circ Lattice spacing $a=0.055 {\rm fm}$ exhibited significant slowing down of topological tunneling in tuning runs $${\rm supublished, part of arxiv[1911.04533]}$$

 $\circ~$ T = 2304: 2 strings with different \bar{Q} through different seed configuration upfolding.

Visualisation of thermalisation through topological charge density

~→ animation, might have to skip to next slide

- $\circ~$ Effective thermalisation is a key question in MF type simulations.
 - \rightarrow First, we check the evolution of the (local) topological charge density q(x)
 - \rightarrow Here just a rough look, a quantitative study is left for the future

Visualisation of thermalisation through topological charge density

- No obvious thermalisation effects 0
- Locally topological charge is evolving
- Correlations in SMD time in line with autocorrelation analysis 0

(\rightsquigarrow next slide)

Further run tests and info:

- Reweighting well behaved within 3%
- \circ Expected distribution in δH , no outliers
- Zolotarev spectral ranges well respected
- Pole number gives high quality approx
- $\circ~({\sf So~far})$ generation was unremarkable

Observed autocorrelation times

Т	$ au_Q$	τ_E
96	11.1(4.1)	4.7(1.7)
384	2.7(1.3)	3.7(1.8)
1152	3.6(1.6)	3.0(1.4)
2304 ₁	1.6(1.0)	2.0(1.3)
2304 ₂	1.5(1.0)	2.5(1.0)
96 _{obc}	7.1(2.6)*	3.3(1.2)*

 \rightsquigarrow Caveat: MC strings not long

Topological charge

• One key observable during generation is the topological charge:

$$\begin{split} Q &= \sum_V q(x) \\ q(x) &= -\frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}[F_{\mu\nu}(x)F_{\rho\sigma}(x)] \\ \text{evaluated at pos. flow time } t_{flow} = 1.3t_0 \end{split}$$

*arxiv[1006.4518]

We see:

- Slow evolution over MC time
- Still, not completely frozen
- Fixed topology simulations in future?

Topological susceptibility

*we follow arxiv[1707.09758]

$$\chi_t = \sum_{|y| \leq R} \langle q(y)q(0)
angle + \delta(R) = \sum_{|y| \leq R} \langle \! \langle q(y)q(0)
angle + \sum_{|y| > R} \langle q(y)q(0)
angle + \mathcal{O}(V^{-1/2})$$

• T = 96: Traditional analysis

(not using TMR method)

• T > 96: Translation averages and errors following MF prescription

At T=2304 we see indications that:

- $\circ~$ each configuration gives the same topological susceptibility (MF errors)
- $\circ\,$ the result is the same irrespective of global topological charge (MF defrosting)
- \rightarrow Other lattices unclear, more work ongoing

Defrosting meson correlation functions

- Calculation of hadron correlators:
 - \circ U(1) noise wall sources
 - $\circ~\textit{N}_{\textit{mirror}} = \textit{T} / \delta \textit{t}_{\textit{mirror}}$ sources per cfg per solve
 - $\circ~$ sources spread with $\delta t_{\it mirror}$ starting from $t_{\it src}$
 - $\circ \ \delta t_{mirror}$ varied but only $\delta t_{mirror} = 96$ shown
 - \circ t_{src} =randomly varied to suppress correlations
- In OBC, two setups:
 - \circ sources close to boundary, $t_{src}=1,\,T-1$
 - \circ sources in the central region, $t_{src} = T/4, T3/4$

Source	$m_{\pi}=m_K$	<i>T</i>	N _{src} * N _{noise}	δt_{mirror}
U(1) wall	418 MeV	96	$48_{t=rnd}$	-
	$\kappa = 0.137945$	384	$48_{t=rnd}$	96
	<i>a</i> = 0.055fm	1152	$48_{t=rnd}$	64/96/128
		2304 ₁	$48_{t=rnd}$	96
		2304 ₂	$48_{t=rnd}$	64/96/128/192
		96 ^{boundary}	$12_{t=1,95}$	-
		96 ^{central}	$12_{t=24,72}$	-

 \rightsquigarrow here only $\delta t_{mirror} = 96$ results will be shown.

Isovector meson correlators as sensitive probe

*arxiv[0707.0396] and arxiv[1406.5449]

- Note: The P S correlator should be zero (stochastically)
- But: At leading order the insertion of Q^2 into the S-S correlator at long distance creates/annihilates a pion \rightsquigarrow like in the η'

 \Rightarrow In case of contamination the P-S correlator obtains *non-zero signal* that behaves as:

$$G_{PS}(t) \sim A_{PS} \cdot \exp[-m_{\pi}t]$$

ightarrow the amplitude scales as $A_{PS}~\sim Q/V$

- Can be checked by comparing A_{PS} in traditional and long-T simulations
- $\circ\,$ Naively, factor relative to reference lattice can be cancelled out $A_{PS}\cdot\,V_{rel}/\bar{Q}$

afrancis@nycu.edu.tw

Isovector meson correlators as sensitive probe

A variation of the master-field approach

- Continuum limit (and thus topological freezing) is becoming a main systematic.
- $\circ\,$ MF approach gives new ways of looking at both.
- Combinations of translational and MC time averages can be a powerful tool.
- $\circ~$ Long-T variation could be a way towards finer a[fm] without losing time trans.inv.

Generating long-T, "defrosted", ensembles

- $\circ~$ Upfolding strategy followed, no obvious signs of thermalisation contamination.
- $\circ\,$ Indications of MF behaviour in χ_t for T = 2304, i.e. $V/V_{trad}=$ 24.

Topologically sensitive observables

- $\circ~$ lsovector meson correlators are particularly sensitive to topological effects.
- $\circ\,$ P-S contamination visible, also in OBC study with sources in central region.
- Indication of effective A_{PS} topo suppression in T = 2304.

Outlook

- $\circ~$ Work has only just begun, many open questions to tackle. Some next steps:
 - Study thermalisation (combine with multiscale equilibration).
 - Combine hadronic measurements with fermion factorisation algorithm?
 - Work out formal aspects. Length scales criterion for "runners" to decide $\mathcal{T}?$
 - Simulations at lower a[fm] (or at fixed topology) for further investigations?

Thank you for your attention.

