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Outline

Goal Construction of lattice chiral gauge theories (LCGTs)

• Analyze the integrability condition of the chiral determinant of overlap
fermions

• Derive necessary and sufficient conditions to construct LCGTs (without
gauge anomalies)

Discussion Reformulate the modern theory of anomalies on the lattice

• Dai-Freed theorem ←→ 5-dim lattice DW fermions
• APS index theorem ←→ 6-dim lattice DW fermions

=⇒ Bordism invariance of the lattice η invariant
• Triviality of the lattice η invariant =⇒ Integrability conditions
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Introduction



Fermions on the lattice

• (d-dim) Wilson fermions

Dw = −γµ
1

2

(
∇µ −∇†

µ

)
+
a

2
∇µ∇†

µ

• (d-dim) Domain-wall (DW) fermions

Xw = Dw −
m0

a
, m0 ∈ (0, 2)

Hw = γ
(
Dw −

m0

a

)
, d = even

• (d-dim) Overlap fermions

Dov =
1

2a

1 +Xw
1√

X†
wXw


• Admissibility condition ∥1− Pµν(x)) ∥ < 2
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Chiral symmetry on the lattice and gauge anomaly

• Ginsparg-Wilson relation {γ5, D} = 2Dγ5D

⇒ γ̂5 = γ5(1− 2D) , P̂± =
1

2
(1± γ̂5)

• Lattice Weyl fermion

ψ−(x) = P̂−ψ−(x) , ψ−(x) =
∑

vi(x)ci , P̂−vi(x) = vi(x)

ψ−(x) = ψ−(x)P+ , ψ−(x) =
∑

ckvk(x) , vk(x)P+ = vk(x)

• Partition function eΓW [U ] =
∫
D [ψ−]D

[
ψ̄−

]
e−SW = det (v̄Dovv)

=⇒ Phase ambiguity of the partition function …lattice gauge anomaly
(due to Ginsparg-Wilson relation)
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Domoain-Wall Fermions (Shamir)

• Reverse the sign of the mass along the d-th axes and take +m→∞
• Define different (d-1)-dim gauge fields(U0, U1) on each boundaries so that
we get chiral fermions (U0 ∼ reference gauge field)

• Interpolate them with a path c

d-dim DW fermion
(Dirichlet b.c.)
(neg. mass) (pos. mass)(pos. mass)

d-th axis

d-dim DW fermion
(AP b.c.)

d-th axis
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Construction of LCGTs



5-dim DW fermions and Dai-Freed theorem

Partition function of 5-dim DW fermions with Dirichlet b.c.
+ Chiral determinant of 4-dim Weyl fermions on the boundaries

(neg. mass) (pos. mass)(pos. mass)

5-th axis

5-dim DW fermion

6-th axis

6-dim DW fermion

4-dim Weyl

fermion 4-dim Weyl

fermion 5-dim Dirac

fermion 5-dim Dirac

fermion

(pos. mass) (pos. mass)(neg. mass)
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5-dim DW fermions and Dai-Freed theorem

5-dim DW fermions + 4-dim Weyl fermions

lim
N→∞

detX
(5)
w

∣∣∣c
Dir∣∣∣∣detX(5)

w

∣∣∣c·c−1

AP

∣∣∣∣1/2
= det

(
vDovv

1
)
det

(
vDovv

0
)∗ det

(
v1†

∏
t∈c̃ Ttv

0
)∣∣det (v1†∏t∈c̃ Ttv

0
)∣∣

=: exp
(
Γ
(
X1 ∪ X0

))
exp (i2πηDF (Y|Dir))

Boundary part exp
(
Γ
(
X1 ∪ X0

))
and the bulk part exp (i2πηDF (Y|cDir)) cancel

out the dependence of {vi}

=⇒ Anomaly inflow based on Dai-Freed theorem
Anomaly↔ bulk dependency exp (i2πηDF (Y|Dir))
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The lattice η invariant and integrability conditions

• Define the lattice η invariant with the phase of 5-dim overlap fermions
[T.Aoyama and YK, 1999]:

ei2πη(Y|Dir/AP) := lim
N→∞

 detD
(5)
ov

∣∣∣
Dir/AP∣∣∣∣detD(5)

ov

∣∣∣
Dir/AP

∣∣∣∣


2

= lim
N→∞

detX
(5)
w

∣∣∣
Dir/AP∣∣∣∣detX(5)

w

∣∣∣
Dir/AP

∣∣∣∣
• Bulk dependence

𝑐!
𝑐" =

ei2πηDF(Y|
c1
Dir)

ei2πηDF(Y|
c2
Dir)

= e
i2πη

(
Y|

c1c
−1
2

AP

)

=⇒ Bulk independency ei2πηDF(Yc1 |Dir) = ei2πηDF(Yc2 |Dir)

“ei2πη(Y|AP) = 1 for arbitrary gauge configurations ”
(Integrability condition)
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6-dim DW fermions and APS index theorem

Partition function of 6-dim DW fermions with Dir. b.c.
+ Determinant of 5-dim overlap fermions on the boundaries

(neg. mass) (pos. mass)(pos. mass)

5-th axis

5-dim DW fermion

6-th axis

6-dim DW fermion

4-dim Weyl

fermion 4-dim Weyl

fermion 5-dim Dirac

fermion 5-dim Dirac

fermion

(pos. mass) (pos. mass)(neg. mass)
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6-dim DW fermions and APS index theorem

6-dim DW fermions + 5-dim overlap fermions

lim
N→∞

detX
(6)
w

∣∣∣c
Dir∣∣∣∣detX(6)

w

∣∣∣cc−1

AP

∣∣∣∣1/2
= detD(5)

ov

∣∣∣
Y1

{
detD(5)

ov

∣∣∣
Y0

}∗
×

det T |cAPS

|det T |cAPS|

(w/T |cAPS ≡ 1
2
Φ1 ·

∏
t∈c̃ T

(5)
t · Φ0, Φi: basis in Yi)

L.H.S. = (−1)I(Z|Dir) , I (Z|Dir) = −
1

2
Tr

{
H(6)

w /

√
H

(6)2
w

∣∣∣∣
Dir

}
Boundary = exp (iπη (Y|AP)) exp (−iπη (Y|AP)) [H.Fukaya et. al.,2020]

Bulk =: exp (iπP (Z|cAPS))

=⇒ APS index theorem

I (Z|Dir) = P (Z|cAPS) + η (Y1|AP)− η (Y0|AP)
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The cohomological problem

• P (Z|cAPS) can be expressed with the lattice topological field

q(6)(z) := −1
2 tr

{
Hw√
H2

w

∣∣∣∣
AP

}
(z, z):

P (Z|cAPS) = lim
N→∞

∑
y,s∈c

q(6)(z)

• (The cohomological problem) Assumption: q(6) can be expressed with the
lattice Chern character and gauge invariant currents:

q(6)(z) = ĉ3(z) + ∂∗µkµ(z)

• Under the perturbative anomaly cancellation condition ĉ3(z) = 0

(i.e. ΣR TrR
[
T a

{
T b, T c

}]
= 0 ):

P (Z|cAPS) =
∑
y

ks(z)|Y1
−
∑
y

ks(z)|Y0
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Bordism invariance of the lattice η invariant

• Redefine the lattice η invariant:

η̌
(
Y1,0|AP

)
= η

(
Y1,0|AP

)
+
∑
y

ks(y, s)|Y1,0

=⇒ e2πiη̌(Y1|AP)e−2πiη̌(Y0|AP) = (−1)2I(Z|
c
Dir ) = 1 (from APS index theorem)

6-th axis

5-dim
boundary

5-dim
boundary

Bordism Invariance
• d-dim manifolds Y and Y ′ are bordant if there
exist a (d+1)-dim manifold Z such that
∂Z = Y1 ⊔ Y2

• An amount α(Y ) is bordism invariant if
α(Y1) = α(Y2) for bordant Y1 and Y2

=⇒ ei2πη̌(Y|AP) is “bordism” invariant
Able to evaluate ei2πη̌(Y|AP) in arbitrary gauge configurations 11/13



Looking back on our discussion

1. Problem Gauge anomaly of 4-dim lattice chiral fermion
Solution Anomaly inflow with 5-dim object exp (i2πηDF (Y|Dir))

2. Problem 5-dim dependency
Solution exp(i2πηDF (Y|c1Dir))/ exp(i2πηDF (Y|c2Dir)) = exp(i2πη (Y|AP))

=⇒ If exp(i2πη (Y|AP)) = 1 for any gauge configurations, it doesn’t
depend on the bulk! (Integrability condition)

3. Problem Calculating exp(i2πη (Y|AP)) for any gauge configurations
Solution Redefining η̌ · · · “bordism” invariant (←Cohomological problem)

=⇒ Only need to calculate it on representatives of “bordism”
equivalent class
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Summary: Construction of LCGTs

• We derived two conditions to construct LCGTs:

Condition-1 Triviality of q(6)(z) under the perturbative anomaly cancellation
condition

Condition-2 ei2πη̌(Y|AP) = 1 for representative gauge configurations of
“bordism” equivalent class following the admissibility
condition on the 5-dim lattice space

• It is known that Condition-1 holds in U(1) and SU(2)× U(1)

[M.Luscher, 1999] [YK and Y.Nakayama,2001]
−→We further confirmed that Condition-2 also holds in those cases

• We gave a proof of Condition-1 in generic non-Abelian gauge theories
[JWP and YK, in preparation]
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Thank you!

13/13



Bordism

• d-dim manifolds Y and Y ′ are bordant if there exist a (d+1)-dim manifold Z
such that ∂Z = Y1 ⊔ Y2

• An amount α(Y ) is bordism invariant if α(Y1) = α(Y2) for bordant Y1 and Y2



SU(2)× U(1) chiral gauge theory

Consider a 5-dim lattice space L5(L4
P × LAP)

Gauge DOF[ref?]
1. U(1) magnetic flux mµν … Defined on L2

P among L4
P

2. U(1) Wilson lineWµ … Defined on L4
P and wraps along LAP direction

3. SU(2) Instanton ϕ … Defined on either L4
P or L3

P × LAP



Result: SU(2)× U(1) chiral gauge theory

U(1) U(1) SU(2)
magnetic flux winding instanton determinant phase

0 0 on L4
P 1 = 14

0 0 on L3
P × L1

AP 1 = (−1)4

1 0 0 1

1 1 0 1

1 0 on L4
P 1

1 0 on L3
P × L1

AP 1

1 1 on L4
P 1

1 1 on L3
P × L1

AP 1

=⇒ Condition-2 confirmed!



Proof of Condition-1

Setup: 6-dim, ĉ3 = 0, q(x) = ∂∗µkµ(x)

• Taking complete axial gauge, we define link variables with a product of
some independent plaquette variables (from a reference point x0)

P̂
(
x, µ, ν;x(0)

)
∼

∏
τ

x∏
y=x0

Û(y, τ)

• Introduce a parameter s:

P̂s

(
x, µ, ν;x(0)

)
∼

∏
τ

x∏
y=x0

Û s(y, τ) , qs(x) = q(x)|Û→Ûs



Proof of Condition-1

• Taylor expansion of qs(x):

qs(x) =

∞∑
n=5

sn

n!
q
(n)
0 (x)

• We can rewrite q(j)0 (x) with gauge-invariant currents form lower degree

=⇒ We can show the triviality of the original field q(x) with those currents

Details will be discussed in our paper in prep.
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