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Goal Construction of lattice chiral gauge theories (LCGTs)

« Analyze the integrability condition of the chiral determinant of overlap
fermions

- Derive necessary and sufficient conditions to construct LCGTs (without
gauge anomalies)

Discussion Reformulate the modern theory of anomalies on the lattice

« Dai-Freed theorem <«+— 5-dim lattice DW fermions
« APS index theorem <«— 6-dim lattice DW fermions
— Bordism invariance of the lattice 5 invariant
« Triviality of the lattice n invariant = Integrability conditions
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Introduction



Fermions on the lattice

« (d-dim) Wilson fermions
1 a
Dy = — 3 (Vu-vE)+ A
+ (d-dim) Domain-wall (DW) fermions
X, = D, — % mo € (0,2)
H, = ﬁ(DW——>, d = even

+ (d-dim) Overlap fermions

1 1
Dovzi 1+ Xy——
2a ( /XJVXW)

- Admissibility condition 11— Puw(2)) | < sgr8=1y )
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Chiral symmetry on the lattice and gauge anomaly

* Ginsparg-Wilson relation {7s,D} = 2D~sD
= 45 = 15(1—2D) , Ps Z%(li%)
- Lattice Weyl fermion
(@) =Py (z), ¢-(8) = Y w@e, Poulr)=uvlx)
b_(@)=9_(@)Pr , ¥_(2) = Y auu(z) , Te(x)Ps =Tk(2)

« Partition function ™IV = [D[y_]D [¢_] e = det (8Doyv)

— Phase ambiguity of the partition function ...lattice gauge anomaly
(due to Ginsparg-Wilson relation)
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Domoain-Wall Fermions (Shamir)

- Reverse the sign of the mass along the d-th axes and take +m — oo

- Define different (d-1)-dim gauge fields(Uy, U;) on each boundaries so that
we get chiral fermions (U, ~ reference gauge field)

* Interpolate them with a path ¢

d-dim DW fermion d-dim DW fermion
(Dirichlet b.c.) (AP b.c.)
(pos. mass) (neg. mass) (pos. mass)
c Ui 1 - U, ()™
A i o
d-th axis d-th axis
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Construction of LCGTs



5-dim DW fermions and Dai-Freed theorem

Partition function of 5-dim DW fermions with Dirichlet b.c.
+ Chiral determinant of 4-dim Weyl fermions on the boundaries

5-dim DW fermion X
(pos. mass) (neg. mass) (pos. mass)

—N \ Y I N 5-th axis
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5-dim DW fermions and Dai-Freed theorem

5-dim DW fermions + 4-dim Weyl fermions

C
« det (01 [,z Tiv°)

Dir — v ! 0 0
/2 det (ZDover”) det (VDov) |det (0 [T,z Ti00) |

det XV(V5)

lim
N—oo c~c*1

det XV(V5)
AP

=: exp (I' (X1 UXo)) exp (:2mnpr (Y|p;,))

Boundary part exp (I' (X; UXj)) and the bulk part exp (i2mnpr (Y|p,;,)) cancel
out the dependence of {v;}

= Anomaly inflow based on Dai-Freed theorem
Anomaly <> bulk dependency exp (:27npr (Y|p;,))
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The lattice 1 invariant and integrability conditions

« Define the lattice n invariant with the phase of 5-dim overlap fermions
[T.Aoyama and YK, 1999]:

det DY det X

Dir/AP Dir/AP

eiQWn(YIDir/AP) o lim
N—o0

det Dgi)

Dir/AP Dir/AP

« Bulk dependence

9 cq =il
eZQTrnDF(YlDir) i27rn<Y\cAll:2 >
=€

oi2mnor (Y13, ) o

— Bulk independency 2™ mr (¥ Ipi) — gi2mor (V%2 |p;,)
“ei2m(Ylar) = 1 for arbitrary gauge configurations ”

(Integrability condition)
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6-dim DW fermions and APS index theorem

Partition function of 6-dim DW fermions with Dir. b.c.
+ Determinant of 5-dim overlap fermions on the boundaries

6-dim DW fermion

(pos. mass) (neg. mass) (pos. mass)
...... Uy
PO A K-
6,6\(6\0(\ 6‘6\(6\0‘\
Yo © Y
0 0 1 R
N\ 7 I N 6-th axis
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6-dim DW fermions and APS index theorem

6-dim DW fermions + 5-dim overlap fermions

det XO|° . .
lim Dir__ — det D) {det D } v %‘?PS
o 'd ¢ X cet |12 E Yo | det Tlaps
€l Aw

W/ Tl4ps = 3®1 - [Thes Tt(s) - ®py, @;: basisinY;)

LHS. = (-1)/(F) I<Z|Dir>=—§Tr{H$>/W }
Dir
[H.Fukaya et. al.,2020]

Boundary = exp (imn (Y[p)) exp (—imn (Y[,p))
Bulk =: exp (irP (Z|\pg))
—> APS index theorem

I (Z|py,) = P(Z|apg) + 1 (Yi|ap) — 1 (Yo|ap) el



The cohomological problem

P (Z|%pg) can be expressed with the lattice topological field
¢ (2) = —Ltr{ Hu } (z,2):
AP

2 NG
P(Zljps) = ]\}gnoo Z 79 (2)

Yy,s€C

« (The cohomological problem) Assumption: ¢(®) can be expressed with the
lattice Chern character and gauge invariant currents:

¢ (2) = &3(2) + O ku(2)

+ Under the perturbative anomaly cancellation condition é3(z) =0
(i.e. SpTrg [T {T° T°}] =0):

P (Z|yps) = Zk ‘Yl st(z)’m
Yy
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Bordism invariance of the lattice » invariant

 Redefine the lattice n invariant:

1 (Yiolap) =1 (Yiolap) + Z ks(y,9)lv, ,
Yy

—  2min(Yilap)g=2min(Yolar) = (—1)2/(Zbr) = 1 (from APS index theorem)

m(Volar) g 2(Vilae) Bordism Invariance
= + d-dim manifolds Y and Y’ are bordant if there
pondim ‘ boumdary exist a (d+1)-dim manifold Z such that
Yo | G Yy 8Z=Y1UYs
— 6-th axis + An amount «(Y) is bordism invariant if
Z (Y1) = a(Y2) for bordant Y1 and Ya

— ¢2™1(Ylar) is “bordism” invariant

Able to evaluate ¢2™(¥lar) in arbitrary gauge configurations S



Looking back on our discussion

1. Problem
Solution

2. Problem
Solution

3. Problem
Solution

Gauge anomaly of 4-dim lattice chiral fermion
Anomaly inflow with 5-dim object exp (:27npr (Y|p,,))

5-dim dependency

exp(i2rnr (Y[&,))/ exp(i2mnpr (YIi,)) = exp(i2rn (Y] p))

= If exp(i27n (Y] ,p)) = 1 for any gauge configurations, it doesn’t
depend on the bulk! (Integrability condition)

Calculating exp(i27n (Y| ,,p)) for any gauge configurations
Redefining 7 - - - “bordism” invariant (<+~Cohomological problem)
= Only need to calculate it on representatives of “bordism”
equivalent class
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Summary: Construction of LCGTs

» We derived two conditions to construct LCGTs:

Condition-1 Triviality of ¢(°)(z) under the perturbative anomaly cancellation
condition

Condition-2 ¢2™(Ylar) = 1 for representative gauge configurations of
“bordism” equivalent class following the admissibility
condition on the 5-dim lattice space

« It is known that Condition-1 holds in U(1) and SU(2) x U(1)
[M.Luscher, 1999] [YK and Y.Nakayama,2001]
—We further confirmed that Condition-2 also holds in those cases

« We gave a proof of Condition-1in generic non-Abelian gauge theories
[JWP and YK, in preparation]
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Thank you!



Bordism

+ d-dim manifolds Y and Y’ are bordant if there exist a (d+1)-dim manifold Z
suchthat9Z = Y1 UY,
« An amount «(Y) is bordism invariant if o(Y;) = a(Y3) for bordant Y; and Y;




SU(2) x U(1) chiral gauge theory

Consider a 5-dim lattice space L°(L x Lap)
Gauge DOF[ref?]

1. U(1) magnetic flux m,,, ... Defined on L% among L},
2. U(1) wilson line W,, ... Defined on L}, and wraps along Lap direction
3. SU(2) Instanton ¢ ... Defined on either L3 or L3 x Lap



Result: SU(2) x U(1) chiral gauge theory

u(1) u(1) su(2)
magnetic flux | winding | instanton determinant phase

0 0 onL{ 1=14

0 0 onL} x Lip 1=(-14

1 0 0 1

1 1 0 1

1 0 onL} 1

1 0 onL} x Li, 1

1 1 onL{ 1

1 1 onL3 x Lip 1

— Condition-2 confirmed!




Proof of Condition-1

Setup: 6-dim, ¢3 =0, q(z)= 0;ku(x)

« Taking complete axial gauge, we define link variables with a product of
some independent plaquette variables (from a reference point z)

P (x,,u,y;x(o)) ~ H ﬁ U(y,T)

T Y=o

- Introduce a parameter s:

B (2nria®) ~ [T T 07+ ale) = @i,

T Y=To



Proof of Condition-1

« Taylor expansion of ¢ (z):

« We can rewrite q(()j)(x) with gauge-invariant currents form lower degree

— We can show the triviality of the original field ¢(x) with those currents

Details will be discussed in our paper in prep.
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