Asymptotic lattice spacing dependence of spectral quantities in lattice QCD with Wilson or Ginsparg-Wilson quarks

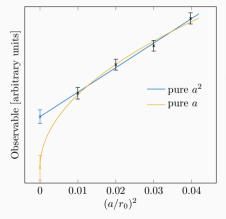
Based on Eur.Phys.J.C 80 (2020) 3, 200; Phys.Lett.B 829 (2022) 137069; arXiv:2206.03536 and ongoing work.

In collaboration with Rainer Sommer and Peter Marquard.

Nikolai Husung LATTICE 2022, Bonn, 13 August 2022

Motivation: Continuum extrapolation

Renormalisation Group Invariant (RGI) quantity ${\cal P}$

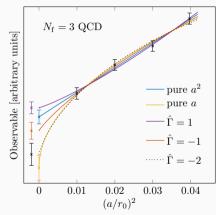


Commonly used ansatz

$$rac{\mathcal{P}(\mathsf{a})}{\mathcal{P}(\mathsf{0})} = 1 + \mathsf{a}^{n_{\min}} \mathsf{const.} + \mathrm{O}(\mathsf{a}^{n_{\min}+1}).$$

Motivation: Continuum extrapolation

Renormalisation Group Invariant (RGI) quantity ${\mathcal P}$



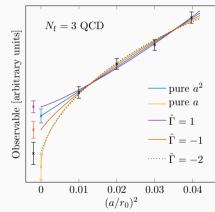
In an asymptotically free theory, like QCD, leading lattice artifacts are of the form (up to factors of $\log \bar{g}(1/a)$)

$$egin{aligned} rac{\mathcal{P}(a)}{\mathcal{P}(0)} &= 1 + a^{n_{\min}} \sum_i \left[ar{g}^2 (1/a)
ight]^{ar{\Gamma}_i} c_i \ &+ \mathrm{O}(a^{n_{\min}+1}, a^{n_{\min}} ar{g}^{2\hat{\Gamma}_i + 2} (1/a), \ldots) \end{aligned}$$

 $\hat{\Gamma}_i$ can be negative and distinctly nonzero \Rightarrow impact on convergence.

Motivation: Continuum extrapolation

Renormalisation Group Invariant (RGI) quantity ${\mathcal P}$



In an asymptotically free theory, like QCD, leading lattice artifacts are of the form (up to factors of $\log \bar{g}(1/a)$)

$$egin{aligned} rac{\mathcal{P}(a)}{\mathcal{P}(0)} &= 1 + a^{n_{\min}} \sum_i \left[ar{g}^2 (1/a)
ight]^{ar{\Gamma}_i} c_i \ &+ \mathrm{O}(a^{n_{\min}+1}, a^{n_{\min}} ar{g}^{2\hat{\Gamma}_i + 2} (1/a), \ldots) \end{aligned}$$

 $\hat{\Gamma}_i$ can be negative and distinctly nonzero \Rightarrow impact on convergence.

Warning example: 2d O(3) non-linear sigma model $\min \hat{\Gamma}_i = -3$ [Balog et al., 2009, 2010]

 \Rightarrow Compute $\hat{\Gamma}_i$ in QCD to gain better control over continuum extrapolation.

Symanzik Effective Theory (SymEFT)

Describe lattice spacing dependence in terms of a **continuum** Effective Field Theory [Symanzik, 1980, 1981, 1983a,b]

$$S_{\mathrm{Sym}} = S_{\mathrm{QCD}} + a^{n_{\min}} \int \mathrm{d}^4 x \sum_j \bar{\omega}_j(g_0) \mathcal{O}_j(x) + \dots$$

with **on-shell** operator basis \mathcal{O}_j compatible with symmetries of lattice formulation and matching coefficients $\bar{\omega}_j$.

The leading asymptotic lattice spacing dependence can then be written as

$$rac{\mathcal{P}(a)}{\mathcal{P}(0)} = 1 - a^{n_{\min}} \sum_{j} [2b_0 \bar{g}^2(1/a)]^{\hat{\Gamma}_j} \hat{c}_j \delta \mathcal{P}_{j;\text{RGI}} + \dots$$

 $\hat{\Gamma}_j$ are related to 1-loop anomalous dimensions of irrelevant operators with mass-dimension $[\mathcal{O}]=4+n_{\min}$.

Basis sufficient for spectral quantities.

For non-spectral quantities also contributions from discretised local fields must be included.

Minimal operator basis at O(a)

Relevant basis [Sheikholeslami, Wohlert, 1985] for unimproved Wilson quarks.

$$\frac{i}{4}\bar{\Psi}\sigma_{\mu\nu}F_{\mu\nu}\Psi$$

$$\frac{\operatorname{tr}(m)}{g_0^2}\operatorname{tr}(F_{\mu\nu}F_{\mu\nu}) \quad \bar{\Psi}m^2\Psi \quad \operatorname{tr}(m)\bar{\Psi}\Psi \quad \operatorname{tr}(m)^2\bar{\Psi}\Psi \quad \operatorname{tr}(m^2)\bar{\Psi}\Psi$$

Basis commonly used to perform non-perturbative O(a) improvement of Wilson quarks [Lüscher et al., 1997].

Minimal operator basis at $O(a^2)$

pure gauge [Lüscher, Weisz, 1985a] O(a) improved [Sheikholeslami, Wohlert, 1985]

Wilson-like [Sheikholeslami, Wohlert, 1985]

$$\begin{split} \frac{1}{g_0^2} \mathrm{tr}(D_\mu F_{\nu\rho} D_\mu F_{\nu\rho}) & \sum_\mu \bar{\Psi} \gamma_\mu D_\mu^3 \Psi \qquad g_0^2 (\bar{\Psi} \Gamma \Psi)^2 \qquad \qquad g_0^2 (\bar{\Psi} \Gamma T^a \Psi)^2 \\ \frac{1}{g_0^2} \sum_\mu \mathrm{tr}(D_\mu F_{\mu\nu} D_\mu F_{\mu\nu}) & \Gamma \in \{\mathbb{1}, \gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu, i\sigma_{\mu\nu}\} \end{split}$$

$$\frac{i}{4}\bar{\Psi}m\sigma_{\mu\nu}F_{\mu\nu}\Psi \qquad \frac{i\mathrm{tr}(m)}{4}\bar{\Psi}\sigma_{\mu\nu}F_{\mu\nu}\Psi \qquad \frac{\mathrm{tr}(m^2)}{g_0^2}\mathrm{tr}(F_{\mu\nu}F_{\mu\nu}) \qquad \frac{\mathrm{tr}(m)^2}{g_0^2}\mathrm{tr}(F_{\mu\nu}F_{\mu\nu})$$

$$\bar{\Psi}m^3\Psi \qquad \mathrm{tr}(m)\bar{\Psi}m^2\Psi \qquad \mathrm{tr}(m^2)\bar{\Psi}m\Psi \qquad \mathrm{tr}(m)^2\bar{\Psi}m\Psi$$

$$\mathrm{tr}(m^3)\bar{\Psi}\Psi \qquad \mathrm{tr}(m^2)\mathrm{tr}(m)\bar{\Psi}\Psi \qquad \mathrm{tr}(m)^3\bar{\Psi}\Psi \qquad \Psi = (\mathrm{u},\mathrm{d},\mathrm{s},\ldots)$$

Non-perturbative improvement impractical due to (7,13) massless + 11 massive operators (GW,Wilson)!

Renormalisation Group

Leading lattice artifacts are parametrised as

$$\frac{\mathcal{P}(a)}{\mathcal{P}(0)} = 1 - \mathbf{a}^{\mathbf{n}_{\min}} \sum_{j} c_{j}^{\mathcal{O}}(\bar{\mathbf{g}}^{2}(1/\mathbf{a})) \delta \mathcal{P}_{j}^{\mathcal{O}}(1/\mathbf{a}) + \mathrm{O}(\mathbf{a}^{\mathbf{n}_{\min}+1}).$$

The remaining scale dependence of $\delta \mathcal{P}_{i}^{\mathcal{O}}(1/a)$ is governed by RGE

$$\mu \frac{\mathrm{d}\delta \mathcal{P}_{i}^{\mathcal{O}}(\mu)}{\mathrm{d}\mu} = -\left[\gamma_{0}^{\mathcal{O}}\bar{g}^{2}(\mu) + \mathrm{O}(\bar{g}^{4})\right]_{ij}\delta \mathcal{P}_{j}^{\mathcal{O}}(\mu).$$

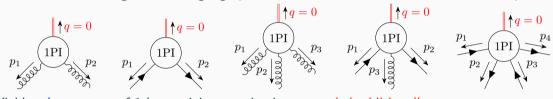
Making a change of basis $\mathcal{O} \to \mathcal{B}$ such that $\gamma_0^{\mathcal{B}} = \operatorname{diag}((\gamma_0)_1, \dots, (\gamma_0)_n)$ allows to rewrite

$$\delta \mathcal{P}_{j}^{\mathcal{B}}(\mathbf{1/a}) = \left[2b_{0}\bar{g}^{2}(\mathbf{1/a})\right]^{\hat{\gamma}_{j}} \delta \mathcal{P}_{j;\mathrm{RGI}}^{\mathcal{B}} \times \left[1 + \mathrm{O}(\bar{g}^{2}(\mathbf{1/a}))\right], \quad \hat{\gamma}_{j} = \frac{(\gamma_{0})_{j}}{2b_{0}}.$$

If $\gamma_0^{\mathcal{O}}$ is non-diagonalisable we can bring it into Jordan normal form. This will give rise to terms with factors of $\log \bar{g}(1/a)$. (relevant for quenched and mixed actions)

Computational strategy

Collect 1-loop UV poles of 1PI graphs with operator insertion $\tilde{\mathcal{O}}(q=0)$ in $D=4-2\varepsilon$ dimensions and background field gauge ['t Hooft, 1975; Abbott, 1981, 1982; Lüscher, Weisz, 1995].



Yields relevant part of 1-loop mixing matrix via __needed additionally

$$\begin{pmatrix} \mathcal{O} \\ \mathcal{E} \end{pmatrix}_{\overline{\mathsf{MS}}} = \begin{pmatrix} \mathbf{Z}_{\mathcal{O}\mathcal{O}} & \mathbf{Z}_{\mathcal{O}\mathcal{E}} \\ \mathbf{0} & \mathbf{Z}_{\mathcal{E}\mathcal{E}} \end{pmatrix} \begin{pmatrix} \mathcal{O} \\ \mathcal{E} \end{pmatrix} \Rightarrow \mu \frac{\mathrm{d}\mathbf{Z}_{\mathcal{O}\mathcal{O}}}{\mathrm{d}\mu} \mathbf{Z}_{\mathcal{O}\mathcal{O}}^{-1} = -\gamma_0^{\mathcal{O}} \bar{\mathbf{g}}^2 + \mathrm{O}(\bar{\mathbf{g}}^4)$$

with class of EOM-vanishing operators $\mathcal{E}.$

Tools: QGRAF [Nogueira, 1993, 2006], FORM [Vermaseren, 2000]

https://github.com/nikolai-husung/Symanzik-QCD-workflow

Matching

Taking also (TL) matching into account yields $c_j^{\mathcal{B}}(\bar{g}^2) = [2b_0\bar{g}^2]^{n_j}\hat{c}_j \times \left\{1 + \mathrm{O}(\bar{g}^2)\right\}$

$$\begin{split} \frac{\mathcal{P}(\boldsymbol{a})}{\mathcal{P}(0)} &= 1 - \boldsymbol{a}^{\boldsymbol{n}_{\min}} \sum_{j} \hat{c}_{j} [2b_{0}\bar{\boldsymbol{g}}^{2}(\boldsymbol{1}/\boldsymbol{a})]^{\hat{\boldsymbol{\Gamma}}_{j}} \delta \mathcal{P}^{\mathcal{B}}_{j;\mathrm{RGI}} \times \{1 + \mathrm{O}(\bar{\boldsymbol{g}}^{2})\} + \mathrm{O}(\boldsymbol{a}^{n_{\min}+1}), \\ \hat{\boldsymbol{\Gamma}}_{j} &= \hat{\gamma}_{j} + \boldsymbol{n}_{j}, \quad \boldsymbol{n}_{j} \in \mathbb{N} \cup \{0\} \end{split}$$

as final form of the asymptotic lattice spacing dependence. \Rightarrow Collection of $(\hat{c}_j, \hat{\Gamma}_j)$.

The leading order coefficients \hat{c}_j depend on the precise formulation of the lattice action

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathrm{QCD}} + \mathbf{a}^{n_{\min}} \sum_{j} \hat{c}_{j} [2b_{0}\bar{g}^{2}(1/\mathbf{a})]^{n_{j}} \mathcal{B}_{j;\mathrm{R}} + \mathrm{O}(\mathbf{a}^{n_{\min}+1}, \mathbf{a}^{n_{\min}}\bar{g}^{2n_{j}+2}, \ldots)$$

and we assume that the 1-loop coefficients do not vanish, i.e. $n_j \in \{0,1\}$.

Results found and how to interpret them

Conventions:

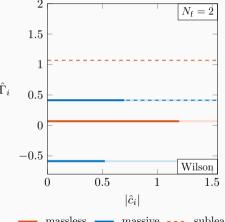
- 1. Normalise vector forming diagonal basis by dominant entry.
 - **Caveat:** massless case might shift \hat{c}_i due to dominant massive mixing.
- 2. Combine non-vanishing basis elements with degenerate eigenvalues $\hat{\Gamma}_{\rm deg}$ but no logs at LO and normalise by dominant matching coefficient $\hat{c}_{\rm max}$, i.e.

$$\mathcal{B}_{ ext{deg}} = rac{1}{\hat{c}_{ ext{max}}} \sum_{i: \hat{\Gamma}_i = \hat{\Gamma}_{ ext{deg}}} \hat{c}_i \mathcal{B}_i$$

3. Assume $|\delta \mathcal{P}_{i;RGI}^{\mathcal{B}}| \sim |\delta \mathcal{P}_{j;RGI}^{\mathcal{B}}| \ \forall i, j$.

9

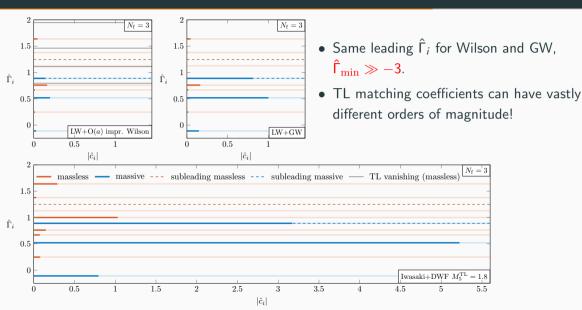
Results found and how to interpret them (Example: unimproved Wilson at O(a))



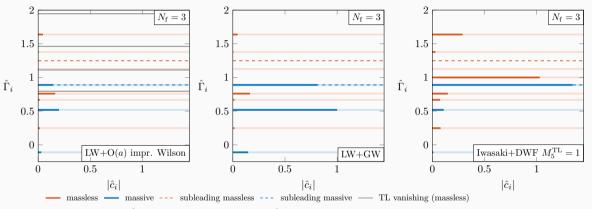
- Dashed lines indicate subleading corrections of leading massive/massless contribution $\hat{\Gamma}_{\min}$.
- Potential 1-loop massless contributions having vanishing TL coefficients are indicated by a gray line.
- Faded lines introduced to make severely suppressed \hat{c}_i visible.
- Massive $\hat{\Gamma}_{\min} \approx -0.59 \gg -3$.
- Axes flipped compared to [NH, P. Marquard, R. Sommer, 2022].

— massless — massive --- subleading massless --- subleading massive — TL vanishing (massless)

$N_{\rm f}=3$ results at $O(a^2)$

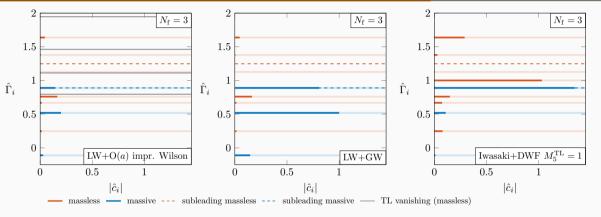


$N_{\rm f}=3$ results at $O(a^2)$



- Same leading $\hat{\Gamma}_i$ for Wilson and GW, $\hat{\Gamma}_{\min} \gg -3$.
- TL matching coefficients can have vastly different orders of magnitude! \Rightarrow tune DWF s.t. $M_5(g_0) = 1 + \mathrm{O}(g_0^2)$.

$N_{\rm f}=3$ results at $O(a^2)$

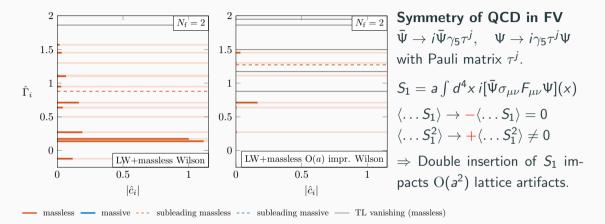


TL Symanzik improvement suggests (using LW gauge action [Lüscher, Weisz, 1985b])

$$\hat{D}_{\mathrm{Wilson}} \to \hat{D}_{\mathrm{Wilson}} - \frac{a^2}{12} \sum_{\mu} \gamma_{\mu} \{ \nabla_{\mu} + \nabla_{\mu}^* \} \nabla_{\mu}^* \nabla_{\mu}$$

which suppresses all massless $O(a^2)$ contributions at tree-level [DeGrand et al., 1995].

Effect of explicit O(a) improvement: $N_f = 2$ massless Wilson quarks at $O(a^2)$



This applies also to maximally twisted tmQCD relying on automatic O(a) improvement.

Summary $O(a^2)$ lattice artifacts

Indicators for asymptotic lattice spacing dependence (assume $|\delta \mathcal{P}_{i;RGI}^{\mathcal{B}}| \sim |\delta \mathcal{P}_{j;RGI}^{\mathcal{B}}| \ \forall i,j)$:

- 1. Value of $\min_i \hat{\Gamma}_i$ (here $N_f \leq 4$).
 - \Rightarrow Distinctly negative value worsens convergence compared to classical a^n power law.
 - $\hat{\Gamma}_{\min} \gg -3$ in contrast to O(3) model.
 - $\hat{\Gamma}_{\min} \gtrsim 0.2$ for massless quarks.
 - Slightly negative $\hat{\Gamma}_{\min} \gtrsim -0.2$ for massive quarks.

Summary $O(a^2)$ lattice artifacts

Indicators for asymptotic lattice spacing dependence (assume $|\delta \mathcal{P}_{i;RGI}^{\mathcal{B}}| \sim |\delta \mathcal{P}_{j;RGI}^{\mathcal{B}}| \ \forall i,j)$:

- 1. Value of $\min_i \hat{\Gamma}_i$ (here $N_f \leq 4$).
 - \Rightarrow Distinctly negative value worsens convergence compared to classical a^n power law.
 - $\hat{\Gamma}_{\min} \gg -3$ in contrast to O(3) model.
 - $\hat{\Gamma}_{\min} \gtrsim 0.2$ for massless quarks.
 - Slightly negative $\hat{\Gamma}_{\min} \gtrsim -0.2$ for massive quarks.
- 2. Density of spectrum for the powers $\Delta \hat{\Gamma}_{ij} = \hat{\Gamma}_i \hat{\Gamma}_j$.
 - \Rightarrow Determines overall suppression of higher power corrections in $\bar{g}^2(1/a)$.
 - Dense spectrum due to presence of 4-fermion operators. May expect complicated lattice artifacts with cancellations and pile ups. Even denser spectrum for mixed actions.

Summary $O(a^2)$ lattice artifacts

Indicators for asymptotic lattice spacing dependence (assume $|\delta \mathcal{P}_{i;RGI}^{\mathcal{B}}| \sim |\delta \mathcal{P}_{j;RGI}^{\mathcal{B}}| \ \forall i,j$):

- 1. Value of $\min_i \hat{\Gamma}_i$ (here $N_f \leq 4$).
 - \Rightarrow Distinctly negative value worsens convergence compared to classical a^n power law.
 - $\hat{\Gamma}_{\min} \gg -3$ in contrast to O(3) model.
 - $\hat{\Gamma}_{\min} \gtrsim 0.2$ for massless quarks.
 - Slightly negative $\hat{\Gamma}_{\min} \gtrsim -0.2$ for massive quarks.
- 2. Density of spectrum for the powers $\Delta \hat{\Gamma}_{ij} = \hat{\Gamma}_i \hat{\Gamma}_j$.
 - \Rightarrow Determines overall suppression of higher power corrections in $\bar{g}^2(1/a)$.
 - Dense spectrum due to presence of 4-fermion operators. May expect complicated lattice artifacts with cancellations and pile ups. Even denser spectrum for mixed actions.
- 3. Hierarchy of matching coefficients \hat{c}_i .
 - \Rightarrow If $|\hat{c}_i| \gg |\hat{c}_j|$ for $\hat{\Gamma}_i > \hat{\Gamma}_j$ suppression by power $\bar{g}^{2\Delta\hat{\Gamma}_{ij}}(1/a)$ may be undone in range of lattice spacings available.

TL matching coefficients can have vastly different orders of magnitude!

Not covered but available

- $\hat{\gamma}_i$ for any $N_{\rm c}$ and $N_{\rm f}$ including the (partially) quenched case. arXiv:2206.03536 Pure gauge ${\rm O}(a^2)$ [NH, P. Marquard, R. Sommer, 2020], $N_{\rm f}=3,4$ [NH, P. Marquard, R. Sommer, 2022].
- Extension to differing discretisations of dynamical flavours and mixed actions.
 arXiv:2206.03536
- ullet Gradient flow in pure gauge ${\rm O}(a^2)$: 3rd operator with $\hat{\gamma}_{\min}=0$, see PhD thesis [NH, 2021].

Outlook

- Leading asymptotic behaviour is now known and should be incorporated into continuum extrapolations (of spectral quantities) e.g.:
 - through use of dominant $\hat{\Gamma}$ in extrapolations,
 - ullet or vary $\hat{\Gamma}$ in the range of 1-loop anomalous dimensions,
 - ...

Best practice must still be worked out. Be careful when doing extrapolations!

- Stay tuned for: Enlarged spectra for some local fermion bilinears.
 - \Rightarrow Additional set of powers $\hat{\Gamma}_i$ for each local field involved in non-spectral quantity.
- Possible directions for future research:
 - Gradient flow for full QCD (unflowed quarks) requires inclusion of two additional operators,
 - staggered quarks require additional operators in the minimal basis compared to GW quarks due to flavour changing interactions,
 - ...

- J. Balog, F. Niedermayer, and P. Weisz. Logarithmic corrections to $O(a^2)$ lattice artifacts. *Phys. Lett.*, B676:188–192, 2009.
- J. Balog, F. Niedermayer, and P. Weisz. The Puzzle of apparent linear lattice artifacts in the 2d non-linear sigma-model and Symanzik's solution. *Nucl. Phys.*, B824:563–615, 2010.
- K. Symanzik. Cutoff dependence in lattice ϕ_4^4 theory. NATO Sci. Ser. B, 59:313–330, 1980.
- K. Symanzik. Some Topics in Quantum Field Theory. In Mathematical Problems in Theoretical Physics. Proceedings, 6th International Conference on Mathematical Physics, West Berlin, Germany, August 11-20, 1981, pages 47–58, 1981.
- K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 1. Principles and ϕ^4 Theory. *Nucl. Phys.*, B226:187–204, 1983a.

- K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory. *Nucl. Phys.*, B226:205–227, 1983b.
- B. Sheikholeslami and R. Wohlert. Improved Continuum Limit Lattice Action for QCD with Wilson Fermions. *Nucl. Phys.*, B259:572, 1985.
- M. Lüscher, S. Sint, R. Sommer, P. Weisz, and U. Wolff. Nonperturbative O(a) improvement of lattice QCD. *Nucl. Phys.*, B491:323–343, 1997.
- M. Lüscher and P. Weisz. On-shell improved lattice gauge theories. *Comm. Math. Phys.*, 97 (1-2):59–77, 1985a.
- G. 't Hooft. The Background Field Method in Gauge Field Theories. In Functional and Probabilistic Methods in Quantum Field Theory. 1. Proceedings, 12th Winter School of Theoretical Physics, Karpacz, Feb 17-March 2, 1975, pages 345–369, 1975.

- L. F. Abbott. The Background Field Method Beyond One Loop. *Nucl. Phys.*, B185:189–203, 1981.
- L. F. Abbott. Introduction to the Background Field Method. *Acta Phys. Polon.*, B13:33, 1982.
- M. Lüscher and P. Weisz. Background field technique and renormalization in lattice gauge theory. *Nucl. Phys.*, B452:213–233, 1995.
- P. Nogueira. Automatic feynman graph generation. *Journal of Computational Physics*, 105 (2):279–289, 1993.
- P. Nogueira. Abusing qgraf. Nucl. Instrum. Meth., A559:220-223, 2006.
- J. A. M. Vermaseren. New features of FORM. 2000.

- NH, P. Marquard, R. Sommer. The asymptotic approach to the continuum of lattice QCD spectral observables. *Phys. Lett. B*, 829:137069, 2022.
- M. Lüscher and P. Weisz. On-Shell Improved Lattice Gauge Theories. *Commun. Math. Phys.*, 97:59, 1985b. [Erratum: Commun.Math.Phys. 98, 433 (1985)].
- T. A. DeGrand, A. Hasenfratz, P. Hasenfratz, and F. Niedermayer. The Classically perfect fixed point action for SU(3) gauge theory. *Nucl. Phys. B*, 454:587–614, 1995.
- NH, P. Marquard, R. Sommer. Asymptotic behavior of cutoff effects in Yang-Mills theory and in Wilson's lattice QCD. *Eur. Phys. J. C*, 80(3):200, 2020.
- NH. Logarithmic corrections in Symanzik's effective theory of lattice QCD. PhD thesis, Humboldt U., Berlin, Humboldt U., Berlin, 8 2021.