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Motivation: Continuum extrapolation
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Motivation: Continuum extrapolation

Renormalisation Group Invariant (RGI) quantity P

Observable [arbitrary units]

0 0.01 0.02 0.03

0.04

In an asymptotically free theory, like QCD, leading lattice
artifacts are of the form (up to factors of log g(1/a))

=1+a™n Y [g%(1/a)] i
i
+ O(anlllin+17 anming—2f"—~_2(]_/a)7 )

[ can be negative and distinctly nonzero
= impact on convergence.

(a/ro)?
Warning example: 2d O(3) non-linear sigma model min [; = —3  [Balog et al., 2009, 2010]

= Compute [; in QCD to gain better control over continuum extrapolation. 2



Symanzik Effective Theory (SymEFT)

Describe lattice spacing dependence in terms of a continuum Effective Field Theory
[Symanzik, 1980, 1981, 1983a,b]

Ssym = Sacp + 2™ / xS Bi(@)0(x) + ...
J

with on-shell operator basis O; compatible with symmetries of lattice formulation and
matching coefficients ;.

The leading asymptotic lattice spacing dependence can then be written as

P(a) ; =2 [
— 1| — gjtin 2b 1 JE;0P;. e
7)(0) a ;[ Og ( /a)] C_/ _/,RGI +
IA_J- are related to 1-loop anomalous dimensions of irrelevant operators with mass-dimension

[O] = 4 + Nyin.

Basis sufficient for spectral quantities.
For non-spectral quantities also contributions from discretised local fields must be included.



Minimal operator basis at O(a)

Relevant basis [Sheikholeslami, Wohlert, 1985] for unimproved Wilson quarks.
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Basis commonly used to perform non-perturbative O(a) improvement of Wilson quarks
[Liischer et al., 1997].



Minimal operator basis at O(a?)

pure gauge [Liischer, Weisz, 1985a] ~ O(a) improved [Sheikholeslami, Wohlert, 1985]
Wilson-like [Sheikholeslami, Wohlert, 1985]
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Non-perturbative improvement impractical due to (7, 13) massless 4+ 11 massive operators
(GW,Wilson)! 5



Renormalisation Group

Leading lattice artifacts are parametrised as

P(a . n
PEO): - ZC 2(1/a))6PP(1/a) + O(a™T1).

The remaining scale dependence of 5731-0(1/3) is governed by RGE

(@]
pSTE) 1982 + (") PP (0.

Making a change of basis O — B such that 7§ = diag ((70)1,- - -, (70)n) allows to rewrite

_ _ 2 70)j
§PP(1/a) = [2b0g2(1/a)]71 §PPrar X [L+0(8%(1/2))], 4= (zsz'
If ’yg) is non-diagonalisable we can bring it into Jordan normal form. This will give

rise to terms with factors of log g(1/a). (relevant for quenched and mixed actions)




Computational strategy

Collect 1-loop UV poles of 1Pl graphs with operator insertion O(q = 0) in D = 4 — 2¢
dimensions and background field gauge ['t Hooft, 1975; Abbott, 1981, 1982; Liischer, Weisz, 1995].

Yields relevant part of 1-loop mixing matrix via needed additionally

e
O ZOO Zog O dZOO —1 O =2 _4
= = p——Zop = — +0
(2) (% 2)(8) - woozah - —wsom

with class of EOM-vanishing operators £.

Tools: QGRAF [Nogueira, 1993, 2006], FORM [Vermaseren, 2000]
https://github.com/nikolai-husung/Symanzik-QCD-workflow 7


https://github.com/nikolai-husung/Symanzik-QCD-workflow

Taking also (TL) matching into account yields ch(§2) = [2bog?]" ¢ x {14 0(8?)}

= 1— a"in N g[2b0g%(1/a)] 16P g x {1+ O(82)} + O(a™in+1),
J

;=4 +n, njeNU{0}

as final form of the asymptotic lattice spacing dependence. = Collection of (¢, fj)

The leading order coefficients ¢; depend on the precise formulation of the lattice action

L = Loop + "™ Y §[2bog%(1/2)]V By + O(ammin L aMming2t2 )

J

and we assume that the 1-loop coefficients do not vanish, i.e. nj € {0,1}.



Results found and how to interpret them

Conventions:

1. Normalise vector forming diagonal basis by dominant entry.
Caveat: massless case might shift ¢; due to dominant massive mixing.

2. Combine non-vanishing basis elements with degenerate eigenvalues fdeg but no logs at
LO and normalise by dominant matching coefficient ¢y, i.e.

Bdeg:Ai Z ¢iB;

Cmax LA A
IE F,—:chg

3. Assume 6P | ~ |0PPrarl Vi J.



Results found and how to interpret them (Example: unimproved Wilson at O(a))

2 N; —2] o Dashed lines indicate subleading corrections of
151 i leading massive/massless contribution IA'min.
b e Potential 1-loop massless contributions having
R vanishing TL coefficients are indicated by a gray line.
r L | . . o
) S e Faded lines introduced to make severely suppressed ¢;
0F i visible.
e Massive [;0 ~ —0.59 > —3.
—0.5| _
! ! Wilson| o Axes flipped compared to [NH, P. Marquard, R. Sommer,
0 0.5 1 1.5
. 2022].
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—— massless = massive --- subleading massless --- subleading massive —— TL vanishing (massless)



N; = 3 results at O(a?)

Ny =3 Ny =3
L5 ) 5 L5 1 e Same leading f,- for Wilson and GW,
. 1b 4 . 1 B I_min > 3.
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N; = 3 results at O(a?)

1.5 S 1.5 3 1.5} 3
A 1r 1 . 1r 1 . 1 b
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0.5 — a 0.5 a 0.5 a
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r L‘W +0(a) impr. Wilson — ‘ | LW+GW ‘ IvyasalirDWF‘ Mgt =1
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|éi |éi |&i
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e Same leading f,- for Wilson and GW, fmm > —3.
e TL matching coefficients can have vastly different orders of magnitude!
= tune DWF s.t. Ms(go) =1+ O(g?).
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N; = 3 results at O(a?)
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TL Symanzik improvement suggests (using LW gauge action [Liischer, Weisz, 1985b])
A A 32 * *
DWilson — DWilson - E Z ’Y,u{vu + v,u}v,uv/l

m
which suppresses all massless O(a?) contributions at tree-level [DeGrand et al., 1995]. 10



N; = 2 massless Wilson quarks at O(a?)

2 TNy = 2 N —2] Symmetry of QCD in FV
— [ — L= o ; o
st 115 V — iVysr/, W — /WU
E I with Pauli matrix 7/.
. 1F 11t 1« 4
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0 | ok
— | LW+ massless Wilson LW+ massless O(a) impr. Wilson| — Double insertion of S; im-
0 0.5 1 0 0.5 - -
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1 d
—— massless = massive --- subleading massless --- subleading massive —— TL vanishing (massless)

This applies also to maximally twisted tmQCD relying on automatic O(a) improvement.
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Summary O(a?) lattice artifacts

Indicators for asymptotic lattice spacing dependence (assume [6P5; | ~ \677J-Z?RGI] Vi, j):

1. Value of min; f; (here Np < 4).
= Distinctly negative value worsens convergence compared to classical a” power law.
e [min > —3 in contrast to O(3) model.
o {min = = 0.2 for massless quarks.
e Slightly negative [ i, = 2 —0.2 for massive quarks.
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Summary O(a?) lattice artifacts

Indicators for asymptotic lattice spacing dependence (assume [6P5; | ~ \677J-Z?RGI] Vi, j):

1.

Value of min; [; (here N < 4).

= Distinctly negative value worsens convergence compared to classical a” power law.
e {min > —3 in contrast to O(3) model.
o {min = = 0.2 for massless quarks.

e Slightly negative [ i, = 2 —0.2 for massive quarks.

. Density of spectrum for the powers Al = — .

= Determines overall suppression of higher power corrections in g2(1/a).
e Dense spectrum due to presence of 4-fermion operators. May expect complicated lattice
artifacts with cancellations and pile ups. Even denser spectrum for mixed actions.
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Summary O(a?) lattice artifacts

Indicators for asymptotic lattice spacing dependence (assume [6P5; | ~ ‘57311;31{(;1’ Vi, j):

1. Value of min; ['; (here Nt < 4).
= Distinctly negative value worsens convergence compared to classical a” power law.
e [ uin > —3 in contrast to O(3) model.
° me = 0.2 for massless quarks.
e Slightly negative [ i, = 2 —0.2 for massive quarks.
2. Density of spectrum for the powers Al = [ — [}
= Determines overall suppression of higher power corrections in g2(1/a).
e Dense spectrum due to presence of 4-fermion operators. May expect complicated lattice
artifacts with cancellations and pile ups. Even denser spectrum for mixed actions.
3. Hierarchy of matching coefficients ¢;.
= If |&| > |¢| for ['; > [; suppression by power ngﬁU(l/a) may be undone in range of
lattice spacings available.
TL matching coefficients can have vastly different orders of magnitude! 12



Not covered but available

e 4; for any N, and N including the (partially) quenched case. arxiv:2206.03536
Pure gauge 0(32) [NH, P. Marquard, R. Sommer, 2020], Ny = 3,4 [NH, P. Marquard, R. Sommer, 2022].

e Extension to differing discretisations of dynamical flavours and mixed actions.
arXiv:2206.03536

e Gradient flow in pure gauge O(a?): 3rd operator with 4, = 0, see PhD thesis [NH, 2021].

13



e Leading asymptotic behaviour is now known and should be incorporated into continuum
extrapolations (of spectral quantities) e.g.:
e through use of dominant f in extrapolations,
e or vary [ in the range of 1-loop anomalous dimensions,

e ...
Best practice must still be worked out. Be careful when doing extrapolations!
e Stay tuned for: Enlarged spectra for some local fermion bilinears.
— Additional set of powers [; for each local field involved in non-spectral quantity.
e Possible directions for future research:
e Gradient flow for full QCD (unflowed quarks) requires inclusion of two additional operators,

e staggered quarks require additional operators in the minimal basis compared to GW quarks
due to flavour changing interactions,

14
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