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Instantons in Quantum Mechanics : the Double Well Potential case

Starting from a Quantum Mechanical model

we can use PI formalism to compute observables, but more interesting ...

Many times impossible to compute, but we can use perturbation theory ! 

We are implicitly choosing a 
minimum of the action where we 

expand on. This procedure 
defines the free theory

However, it can lead to wrong conclusions ...

DWP:

In this two saddles the same perturbation theory!
Doubly degenerate eigenvalues? ... No !

We know from (standard) Quantum Mechanics that ...

Tunneling (i.e. instantonic) contribution!



  

Instantons calculus and standard diagrammatic perturbation theory
Again from standard Quantum Mechanics :

Now, turning back to PI formalism ...

So, if we want the energy splitting in perturbation theory ...
… seems to be more appropriate the Twisted Partition Function

or, to do even better: Compute the TPF in PT:
  1. find the solutions for the (euclidian)
      equation of motion with ABC (the instanton!)
  2. expand the action around this solution, find 
      propagators and new interaction vertices
  3. do the standard diagrammatic perturbation theory

Practically speaking, it becomes 
difficult already at the third order!

Wöhler and Shuryak, Physics Letters B (333) 1994 Escobar-Ruiz, Shuryak and Turbiner, Phys. Rev. D (92 - 025046) 2015



  

Langevin equation for stochastic evolution

Fokker-Planck equation

Fundamental assumptions and Langevin dynamics

We solve the Langevin equation numerically ...

Now additional sistematic error Looking for a continuum
stochastic process extrapolation
(            extrapolation)

Equilibium ..



  

Solving the Numerical Stochastic Perturbation Theory

Following Fokker-Planck formalism

Free theory + Schwinger-Dyson eq.Set of hierarchical equations
Exact at any order in perturbation theory
Perturbative expansion of observables

Diagrammatic Stochastic Perturbation Theory Numerical Stochastic Perturbation Theory

Getting the (usual) Feynman diagrams
in the long-stochastic time limit

Damgaard-Huffel, Phys Rept 152 (1987) 227

Numerically solve the (perturbative) Langevin
equation up to a fixed perturbative order

Di Renzo, Marchesini, Onofri Nucl. Phys. B 426 (1994) 675

Not our approach!

Floratos-Iliopoulos, Nucl.Phys. B 214 (1983) 392



  

ABC, non-trivial solutions, zero modes and all that
We use the lattice theory 
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Expanding the action around instantons ...

In analogy with the continuum theory, now we have a zero mode for the operator 
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we fail to keep first order evolution under control
higher orders will also be compromised
we will manage the observables in order to evolve 
only fluctuations without zero mode

(revisited Faddev-Popov procedure)

But we want the theory around the instanton solutions! We find it numerically by means of :



  

ABC, non-trivial solutions, zero modes and all that
We evolve with (the discrete version of) Langevin equation the fluctuations

with anti-periodic
boundary 
conditions

(order by order)

But, for what mentioned above, we propagate in this way also the zero mode. 
How can we eliminate this component from the fluctuations? 
At the end of each iteration, we can compute ..

using the decomposition
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The eigenvector with zero eigenvalue 
under the action of the operator

Now MonteCarlo evolution under control!



  

Computing the twisted partition function (I) : Faddeev-Popov method
What is the price to pay to be able to handle only with transverse fluctuations       ?

It is not just a problem of MonteCarlo simulatios, in fact ...

Zero
Eigenvalue

In analogy with the continuous theory, we use the Faddeev-Popov procedure
we start considering the tunnelling point that parameterizes
using a suitable rewriting of the identity

now we can integrate out the zero mode and compute the (perturbative) TPF
extra (perturbative term): the Faddeev-Popov term

usually, the continuum perturbation theory starts here
we have some extra work to do: we can measure only expectation values



  

Computing the twisted partition function (II) : the perturbative free energy
Using the (perturbative) TPF without zero mode :

now a perturbative observable

We have a partition function again. But trying to get around the problem (at least in PT) ...

Perturbative
Free energy

The same is true in periodic theory (remembering we only want ratios of partition functions)!

Finally we can go back to the start and consider :

Anti periodic theory Periodic theory
They are already know

for what we have seen
the main contribution



  

Preliminary check: a first look to continuum limit

Leading order
contribution
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The system seems to approach 
the continuum theory very well

at leading order

A direct consequence of 

for

CL:



  

Extrapolations, continuum limit and preliminary results
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Extrapolations, continuum limit and preliminary results
Removing the systematic error of the discrete stochastic process:
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∆τ → 0 extrap.

a continuum stochastic time extrapolation for each lattice spacing
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not an order by order extrapolation : we have (also) cross-correlations
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this seems to encourage us!

But still a lot of work to be done ... 
First of all: smaller lattice spacing simulations



  

Conclusions

Summary:

In this presentation we saw the spirit behind the idea 
of ​​NSPT computations around instantons

Even if it's only preliminary work, I given you a brief account for the first order

On the other hand, this simple system already 
presents some difficulties

1. We have to measure small differences (large relative errors)
2. Statistical errors can be magnified by the exponentiation of free energy
3. Different scaling regions for different observables: we have to extract carefully the CL

Future prospects:

Smaller lattice spacing simulations
High order computations
Switch from Quantum Mechanics to QFT



  

Thank you for your 
attention!
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