Lattice Non-Linear Sigma Model on the Supersphere

Ilaria Costa, Valentina Forini, Ben Hoare, Agostino Patella, Johannes Weber
August 8, 2022
Humboldt University of Berlin

The Non-Linear Sigma Model

String theory and supersymmetry are crucial in finding a description of quantum gravity (e.g. Superstrings).

String theories defined in a curved space-time take the form of a field theory, more precisely a Non-Linear Sigma Model (NLSM).

The dynamical fields Φ are coordinates in a 2-dimensional worldsheet with their values in a Riemannian (super)manifold.

$$
\Phi: \Sigma \rightarrow \mathcal{M} .
$$

Check their behavior at arbitrary coupling numerically using lattice QFT, comparing with non-perturbative results from different methods (i.e. integrability).

The Non-Linear Sigma Model

String sigma models are very hard to study on the lattice (Diffeos invariance is broken by the lattice and power divergences arise) [Bianchi, Forini, Leder et al 19], [Bliard, IC, Forini, Patella 22] .

Look at simpler toy models in the realm of supersymmetric NLSM that share key features with string sigma models.

Under certain conditions, NLSM are renormalizable and even completely solvable.

In lattice QFT, NLSM are a widely used tool applied to a big number of physical problems (statistical mechanics, QCD toy models...).

Starting point: work with a simpler supersymmetric NLSM and check its properties and behavior on the lattice.

Non-Linear Sigma Model on the Supersphere

A possible toy model is the Supersphere/OSP $(N+2 m \mid 2 m)$-invariant NLSM in two dimensions, supersymmetric extension of the $O(N)$ NLSM model.

$$
\mathcal{S}=\frac{1}{g} \int d^{2} x \partial_{\mu} \Phi \cdot \partial^{\mu} \Phi
$$

Φ is a superfield, with bosonic and fermionic degrees of freedom

- $\Phi=\left(\phi_{1}, \ldots, \phi_{N+2 m}, \psi_{1}, \ldots, \psi_{2 m}\right)$;
- $\Phi \in \frac{\operatorname{OSP}(N+2 m \mid 2 m)}{\operatorname{OSP}(N+2 m-1 \mid 2 m)} \equiv S_{N+2 m-1 \mid 2 m}$,
$\Phi \cdot \Phi=\sum \phi_{n}^{2}+\sum J_{\alpha \beta} \psi_{\alpha} \psi_{\beta}=1, \quad J_{\alpha \beta}=\left(\begin{array}{cc}0 & \mathbb{1} \\ -\mathbb{1} & 0\end{array}\right) ;$
- $Z=\int \mathcal{D}_{S} \Phi \exp [-\mathcal{S}] ;$
- $\mathcal{D}_{S} \Phi=\mathcal{D} \phi \mathcal{D} \psi \delta\left(\phi^{2}+J_{\alpha \beta} \psi_{\alpha} \psi_{\beta}\right)$.

Some properties of the Supersphere NLSM

Conjecture: the S-matrix of these theories is determined by continuation of the $O(N)$ counterpart for $N+2 m>1$ and $N<2$ [Saleur, Kaufmann 01].

For $N>1$:

- Renormalization properties of the $\operatorname{OSP}(N+2 m \mid 2 m)$ model on the lattice are similar to the $O(N)$ NLSM.
To calculate physical quantities, we only need to renormalize g;
- At all orders the beta functions $\beta_{O S P}=\beta_{O(N)}$.

The $\operatorname{OSP}(3 \mid 2)$-invariant model

Particular case is $N=m=1$. This is the $\operatorname{OSP}(3 \mid 2)$-invariant model.
We have proven that the 2-point correlation functions are all identical and together with the $\left\langle\varphi_{n}^{4}\right\rangle$, equivalent to the Ising Model.

However, there are some observables that are unique of the supersphere model.

Examples are

$$
\left\langle\phi_{n} \phi_{n} \bar{\psi} \psi\right\rangle \quad\left\langle\phi_{n} \phi_{n} \phi_{m} \phi_{m}\right\rangle \quad\langle\bar{\psi} \psi \bar{\psi} \psi\rangle
$$

We want to check these properties and behavior of the theory at different values of the coupling with lattice simulations.

The theory on the lattice

Discretized action:
$S=\frac{1}{g} \sum_{x} \partial_{\mu}^{f} \Phi \cdot \partial^{f} \mu^{\prime}=\frac{1}{g} \sum_{x, \mu, n}\left[2-\left(\bar{\psi}_{x+\mu} \psi_{x}+\bar{\psi}_{x+} \psi_{x+\mu}+2 \phi_{x+\mu}^{n} \phi_{x}^{n}\right)\right]$.
Using:

- $\phi_{n}=\rho \varphi_{n} \quad$ with $\varphi^{2}=1$.
- $\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \psi \delta\left(\varphi^{2}-1\right) e^{-S_{\text {eff }}}$.

$$
\begin{aligned}
S_{\mathrm{eff}} & =\sum_{x} \bar{\psi} \psi+\frac{2}{g} \sum_{x}\left[1-\varphi_{x+\mu}^{n} \varphi_{x}^{n}+\bar{\psi}_{x} \psi_{x} \varphi_{x}^{n}\left(\varphi_{x+\mu}^{n}+\varphi_{x-\mu}^{n}\right)\right. \\
& \left.-\bar{\psi}_{x+\mu} \psi_{x+\mu} \bar{\psi}_{x} \psi_{x} \varphi_{x+\mu}^{n} \varphi_{x}^{n}-\bar{\psi}_{x}\left(\psi_{x+\mu}+\psi_{x-\mu}\right)\right] .
\end{aligned}
$$

The theory on the lattice

Apply Hubbard-Stratonovich transformation:
$e^{\alpha \xi^{2}}=\sqrt{\frac{\pi}{\alpha}} \int d A e^{-\alpha\left(A^{2}+2 A \xi\right)}, \xi=\bar{\psi} \psi \varphi \quad$ for every multi-index (x, μ, n),
and integrate out the fermions to get

$$
\begin{aligned}
S_{\mathrm{eff}}=\sum_{x} & \frac{2}{g}\left(1-\varphi_{x+\mu}^{n} \varphi_{x}^{n}-\frac{1}{2} A_{x}^{(\mu, n) 2}\right)+\sum_{x, y} \chi_{x}^{T}\left(\mathcal{K} \mathcal{K}^{T}\right)^{-1}(x, y) \chi_{y} . \\
\mathcal{K}(x, y) & =\delta_{x y}+\frac{2}{g}\left[\varphi_{x}^{n}\left(\varphi_{x+\mu}^{n}+\varphi_{x-\mu}^{n}\right) \delta_{x y}+\left(A_{x}^{\mu, n}+A_{x-\mu}^{\mu, n}\right) \varphi_{n, x}^{n} \delta_{x y}\right. \\
& \left.-\frac{1}{2}\left(\delta_{x-\mu, y}+\delta_{x+\mu, y}\right)\right] .
\end{aligned}
$$

Sign problem

$\operatorname{det} \mathcal{K} \in \mathbb{R}$ but is not positive definite.

The theory on the lattice

Pseudo-fermion action is non-local. We have worked with a Hybrid Monte-Carlo algorithm.

Bosonic fields need to satisfy the constraint $\varphi^{2}=1$.
Molecular dynamics: use the rigid rotor hamiltonian to build a symplectic integrator that takes into account the constraints of the system.

$$
\left\{\begin{array}{l}
\pi_{1 / 2}=\pi_{0}+\frac{\tau}{2} Q_{0} F\left(q_{0}\right) \\
q_{1}=\cos \left(\tau\left|\pi_{1 / 2}\right|\right) q_{0}+\sin \left(\tau\left|\pi_{1 / 2}\right|\right) \frac{\pi_{1 / 2}}{\left|1_{1 / 2}\right|} \\
\pi_{1}=\cos \left(\tau\left|\pi_{1 / 2}\right|\right) \pi_{1 / 2}-\sin \left(\tau\left|\pi_{1 / 2}\right|\right)\left|\pi_{1 / 2}\right| q_{0}+\frac{\tau}{2} Q_{1} F\left(q_{1}\right)
\end{array}\right.
$$

\boldsymbol{q} identifies a field (bosons φ or the auxiliary field A);
Q : projectors on the plane orthogonal to q;
$F=-\frac{\partial S}{\partial q}$.

Some numerical results

Results are for a 16×16 lattice at different values of the coupling ($g=0.1,1.0,10$).

Some numerical results

Some numerical results

Outlook

- Compute two-point functions of the bosons and of the conserved currents;
- Find the effective masses;
- Analyze the sign problem in discretized path integral;
- Take the limit $V \rightarrow \infty$;
- Confront with results in the $O(N)$ case known from the literature and with theoretical predictions;
- In the future, we also want to look at OSP-invariant models with a higher number of degrees of freedom (i.e. $\operatorname{OSP}(4 \mid 2), \operatorname{OSP}(5 \mid 2) \ldots$);
- $\operatorname{OSP}(4 \mid 2)$ is scale invariant and would move the analysis towards string theory.

Thank you!

