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Brief Review of Lattice N = 4 super Yang-Mills Theory

We start with a twisted 4d N = 4 supersymmetric theory has 16
supercharges. On lattice we can only preserve one of them exactly.

The other 15 are broken by lattice artifacts and recovered only in the
continuum limit.

Bosons and fermions treated symmetrically meaning that they both
live on links as required by the exact susy and lattice gauge invariance.
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Brief Review of Lattice N = 4 super Yang-Mills Theory

A∗
4 lattice is used as the underlying lattice structure which packs the 4

gauge fields and 6 scalars into 5 complex bosons each associated with
one of the basis vectors of the lattice. They are also valued in the
adjoint representation of the algebra not in the group.

All fields transform under the twisted rotation group

diag(SO(4)L × SO(4)R) (1)

Where L denotes the Lorentz Symmetry and R the R-Symmetry
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Q Invariant Construction

Let’s start with the supersymmetric lattice action

S =
N

4λ
Q
∑
x

Tr

(
χabFab + ηDaUa +

1

2
ηd

)
+ Sclosed (2)

The second term in the action Sclosed is given as.

Sclosed = − N

16λ

∑
x

Tr ϵabcdeχabDcχde (3)
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Q Invariant Construction

Carrying out the Q variation and integrating out the auxiliary field d we
obtain the supersymmetric lattice action S = Sb + Sf where

Sb =
N

4λ

∑
x

Tr

(
FabFab +

1

2
Tr (DaUa)

2

)
(4)

and

Sf = − N

4λ

∑
x

(
Tr χabD[aψb] + Tr ηDaψa

)
(5)

Fermionic part of this action is also known as Kähler-Dirac action.

The continuum limit of this action corresponds to the Marcus or GL
twist of N = 4 Yang-Mills.
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Regulating the flat directions

There are flat directions that corresponds to the classical vacuum
solutions of the bosonic action.

To regulate these flat directions we add the term

Smass = µ2
∑
x

Tr
(
Ua(x)Ua(x)− I

)2
(6)

This term gives masses to the scalars.

Lifts the degeneracy and provides a unique ground state.
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Controlling the U(1) modes

Since each link is an element of the algebra gl(N,C ), this formulations
naturally describes the gauge group U(N) = SU(N)× U(1).

Even though the U(1) gauge degrees of freedom decouple in the
continuum limit they introduce lattice artifacts at strong coupling and
need to be suppressed to access strong coupling regimes.

Previous attempts to control this U(1) mode include adding

A plaquette determinant term can go up to λ ∼ 6
arXiv: 1505.03135 by S. Catterall and D. Schaich
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New Action

Instead, we include a new term to the action which drives the determinant
of each individual gauge link to unity.

N

4λ
κQ

∑
x ,a

Tr (η) (Redet (Ua(x)− 1)) (7)

This term breaks the U(1) symmetry explicitly. But since U(1) is a
decoupled free theory in the continuum limit we are still preserving
the SU(N) gauge invariance.

Most important result of this new term is that it allows simulation
with arbitrarily large coupling.

Results for the SU(2) SYM using this new term can be seen from our
paper arXiv:2009.07334
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Phase structure of the SU(3) Lattice SYM

As a first test, We plot the Expectation value of the link determinant vs λ
for 84 lattices at µ = 0.1, 0.05, 0.01.
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The expectation value is close to unity out to very large λ provided µ2 is
small enough confirming that we have effectively reduced the gauge fields
to SU(3).
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Phase structure of the SU(3) Lattice SYM

Next we look at the expectation value of the bosonic action
1
V < Sb >=

9N2

2 for an N color theory on a system with (lattice) volume
V independent of coupling λ.
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From these two plots we see that there is no phase transition as we
vary λ as expected for a N = 4 SYM.
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Absence of a sign problem

Writing the Pfaffian phase as e iα(λ,U) we plot the quantity 1− cosα
as a function of µ for λ = 10.
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Pfaffian phase saturates as L → ∞ and decreases as µ→ 0.
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Supersymmetric Wilson Loops & Polyakov Line Correlators

We showed strong evidence that the lattice theory

Exists in a single phase with unbroken supersymmetry out to very
large coupling

And it can be simulated with a Monte Carlo algorithm without
encountering a sign problem.

We can turn on to confirming known results for N = 4 Yang-Mills at
strong coupling for Supersymmetric Wilson loops and static potential.
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Supersymmetric Wilson loops are generalization of regular Wilson
loops by including contibutions from the scalars and are realized in
the twisted construction by forming path ordered products of
complexified lattice gauge fields Ua

The holographic prediction for the supersymmetric Wilson loops is

that at strong coupling they depend on W (R,T ) = e(c
√
λT/R) not on

λ as expected from perturbation theory.
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Polyakov Line Correlators

Another interesting question is whether we can see evidence for a
non-abelian Coulomb potential.

To probe for this is we calculated the correlators of (smeared)
Polyakov lines defined as.

P(R) =
∑
x ,y

[
< P(x)P†(y) > − < P(x) >< P†(y) > δ(R, |x − y |)

]
(8)

where |x − y | is the distance in the A∗
4 lattice.

This is expected to vary like P(R) ∼ e−V (R)T with V (R) the static
potential.
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Polyakov Line Correlators

Here we show the logarithm of the Polyakov line correlators with fits of
form a+ b/R for L = 84 lattices with smearing paramaters set at
Nsmear = 4, α = 0.45
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As can be seen from the fits our data fits nicely to a function of form
1/R as expected from the holographic predictions.
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Polyakov Line Correlators

We can do the same calculation for a L = 124 lattice as well
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Again we see that we have a clear 1/R dependence for the correlators.
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Extracting the Non-Abelian Coulomb Potential

We can take the coefficient of these 1/R fits and plot them as a function
of the coupling to compare our results with the holographic predictions for
the Static potential
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We see that our results show a
√
λ dependence as expected and are

close to the holograhic predicitions which is shown as the blue line
above.
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Conclusions

The square root behavior at large λ is consistent with the result for
circular Wilson loops in N = 4 SYM derived by N. Drukker and D.
Gross. arXiv:hep-th/0010274 This strange

√
λ dependence cannot be

seen in perturbation theory.

Furthermore we showed that the static potential shows the expected
1/R dependence.

Comparing the functional dependence on the
√
λ with the

holographic results derived by J.K. Erickson, G.W. Semenoff, R.J.
Szabo,K. Zarembo in arXiv:hep-th/9911088v1 and further we see that
our results are close to the holographic predictions.

For future work we need to figure out the dependence on the
smearing parameters, bosonic mass and try to get closer to the
holographic prediction.
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Thanks for listening.
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Fitting results for the 1/R fits for L = 84, µ = 0.05,Nsmear = 4, α = 0.45

λ a+ b/R Reduced-χ2

5 5.40(1) + 0.64(3)/R 0.13

10 5.19(1) + 0.62(3)/R 0.06

15 5.50(1) + 0.63(4)/R 0.99

20 5.66(2) + 0.92(4)/R 0.96

23 5.27(1) + 0.82(3)/R 0.08

25 5.12(1) + 0.89(3)/R 0.04

27 5.69(1) + 0.71(3)/R 0.99

30 5.09(2) + 1.07(6)/R 0

Table: Fitting results for the 1/R

To obtain these fits we fitted the data between 1 < R < 4 for
Nsmear = 4, α = 0.45 and µ = 0.05
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Fitting results for the 1/R fits for L = 124, µ = 0.05,Nsmear = 4, α = 0.45

λ a+ b/R Reduced-χ2

5 6.15(1) + 0.85(3)/R 0.99

10 5.82(1) + 0.81(2)/R 0.95

15 5.82(7) + 0.91(4)/R 0.88

20 6.02(1) + 0.98(4)/R 0.99

25 5.54(1) + 0.95(3)/R 0.76

30 5.55(2) + 1.09(3)/R 0.51

Table: Fitting results for the 1/R

To obtain these fits we fitted the data between 1.5 < R < 4 for
Nsmear = 4, α = 0.45 and µ = 0.05
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L a
√
λ+b Reduced-χ2

8 0.12(4)
√
λ+ 0.3(2) 0.18

12 0.10(2)
√
λ+ 0.49(9) 0.07

Table: Fitting parameters for
√
λ dependence of 1/R terms
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Ward Identities for SU(3)
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Figure: Ward Identity vs λ for µ = 0.01, 0.05, 0.1

Goksu Can Toga (Syracuse University) Aug 8 2022 24 / 24


	Supersymmetry on Lattice
	Brief Review of Lattice N=4 super Yang-Mills Theory
	Details of the Q Invariant Construction

	SU(3) Lattice SYM
	Phase structure of the SU(3) Lattice SYM
	Supersymmetric Wilson Loops
	Polyakov Line Correlators

	Conclusions

