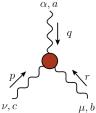
General kinematics three-gluon vertex in Landau-gauge from quenched-lattice QCD

F. Pinto Gómez, F. De Soto, J. Rodríguez-Quintero in collaboration with M. N. Ferreira, J. Papavassiliou

University Pablo de Olavide, Sevilla University de Huelva

The 39th International Symposium on Lattice Field Theory



Three-gluon Vertex	Lattice setups	Form Factors	Results	Conclusions
●000000	O	0000	000000	00
The three-g	uon Vertex	< Comparison of the second sec		

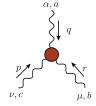
$$\mathcal{L}_{ ext{YM}} = -rac{1}{4} F^{\mu
u}_{a} F^{a}_{\mu
u} \qquad F^{a}_{\mu
u} = \partial_{\mu} A^{a}_{
u} - \partial_{
u} A^{a}_{\mu} - g \ f^{abc} A^{b}_{\mu} A^{c}_{
u}$$

- Responsible for the main differences between gluon and photon dynamics.
- Non-perturbative object which can be computed from the lattice and DSE.
- Key ingredient in others DSE.
- Intimately linked to asymptotic freedom.

э

イロト 不得 トイヨト イヨト

Landau gauge


Landau gauge $\partial_{\mu}A^{a}_{\mu} = 0$ fixed numerically, allowing to compute gauge dependent quantities.

• Gluon propagator:

$$\Delta^{ab}_{\mu
u}(q^2)=\langle A^a_\mu(q)A^b_
u(-q)
angle=\delta^{ab}\Delta(q^2)\mathcal{P}_{\mu
u}(q)$$

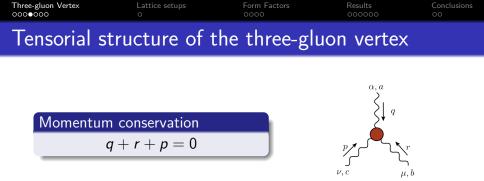
Three-gluon vertex:

 $f^{abc}\mathcal{G}_{lpha\mu
u}(q,r,p)=\langle A^a_lpha(q)A^b_\mu(r)A^c_
u(p)
angle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The transversely projected vertex

 $\mathcal{G}^{\alpha\mu\nu}(q,r,p) = g\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$ which corresponds to the transverse projection of the 1PI vertex:

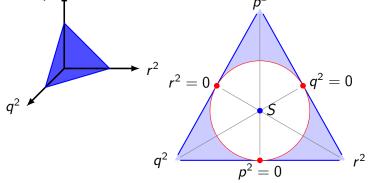

$$\bar{\mathsf{\Gamma}}^{\alpha\mu\nu}(q,r,p) = \mathsf{\Gamma}^{\alpha'\mu'\nu'}(q,r,p) P^{\alpha}_{\alpha'}(q) P^{\mu}_{\mu'}(r) P^{\nu}_{\nu'}(p)$$

No access to longitudinal part

If the 1PI vertex, $\Gamma^{\alpha\mu\nu}(q,r,p)$ has a longitudinal and a transverse part:

$$\Gamma^{lpha\mu
u}(q,r,p) = \Gamma_L^{lpha\mu
u}(q,r,p) + \Gamma_T^{lpha\mu
u}(q,r,p)$$

we will only access the transverse part,


Ball-Chiu decomposition [Phys. Rev. D22 (1980) 2550]

- 14 independent tensors $(\ell_1, \ell_2, \cdots, \ell_{10}, t_1, \cdots, t_4)$
- Transverse projection \rightarrow 4 independent tensors

Transversely projected vertex

 $\bar{\mathsf{\Gamma}}^{\alpha\mu\nu}(\boldsymbol{q},\boldsymbol{r},\boldsymbol{p}) = \bar{\mathsf{\Gamma}}_{A}\lambda_{A}^{\alpha\mu\nu} + \bar{\mathsf{\Gamma}}_{B}\lambda_{B}^{\alpha\mu\nu} + \bar{\mathsf{\Gamma}}_{C}\lambda_{C}^{\alpha\mu\nu} + \bar{\mathsf{\Gamma}}_{D}\lambda_{D}^{\alpha\mu\nu}$

 $\bar{\Gamma}^{\alpha\mu\nu}(q,r,p)$ depends on three momenta, with q + r + p = 0. The scalar form factors can be cast in terms of q^2 , r^2 and p^2 . p^2

Kinematics of the three-gluon vertex

Particular cases:

Case	Def.	q̂r	Tensors
Sym.	$q^2 = r^2 = p^2$	$\frac{2\pi}{3}$	$\lambda_{1,2}^{sym}$
Soft gluon	p=0	π	λ_3^{sg}
Collinear	q = r = -p/2	0	(none)
Bisectoral	$q^2 = r^2$	(0 <i>,</i> π)	3
General		_	4

Symmetric and soft-gluon cases already studied in [Phys.Lett.B 818 (2021) 136352]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Three-gluon Vertex
 Lattice setups
 Form Factors
 Results
 Conclusions

 Occord
 O
 O
 O
 O

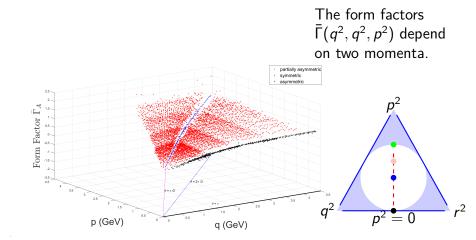
 Tensorial structure of the three-gluon vertex
 O
 O

$$\bar{\Gamma}^{\alpha\mu\nu} = \underbrace{\bar{\Gamma}_A \lambda_A^{\alpha\mu\nu}}_{\text{Tree-level}} + \bar{\Gamma}_B \lambda_B^{\alpha\mu\nu} + \bar{\Gamma}_C \lambda_C^{\alpha\mu\nu} + \bar{\Gamma}_D \lambda_D^{\alpha\mu\nu}$$

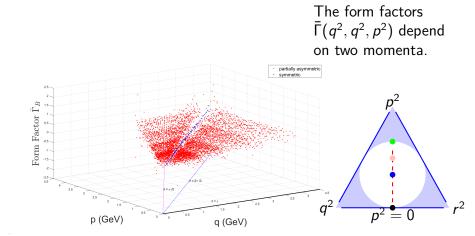
Basis for the transevsely projected vertex

$$\begin{split} \lambda_{A}^{\alpha\mu\nu}(q,r,p) &= \left(\ell_{1}^{\alpha'\mu'\nu'} + \ell_{4}^{\alpha'\mu'\nu'} + \ell_{7}^{\alpha'\mu'\nu'} \right) P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \\ \lambda_{B}^{\alpha\mu\nu}(q,r,p) &= 3 \frac{(r-p)^{\alpha'}(p-q)^{\mu'}(q-r)^{\nu'}}{q^{2}+r^{2}+p^{2}} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \\ \lambda_{C}^{\alpha\mu\nu}(q,r,p) &= \frac{3(\ell_{3}^{\alpha'\mu'\nu'} + \ell_{6}^{\alpha'\mu'\nu'} + \ell_{9}^{\alpha'\mu'\nu'})}{q^{2}+r^{2}+p^{2}} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \end{split}$$

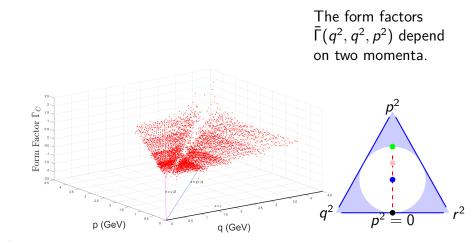
$$\lambda_D^{\alpha\mu\nu}(\boldsymbol{q},\boldsymbol{r},\boldsymbol{p}) = \left(\frac{3}{q^2+r^2+p^2}\right)^2 \left(t_1^{\alpha\mu\nu}+t_2^{\alpha\mu\nu}+t_3^{\alpha\mu\nu}\right)$$

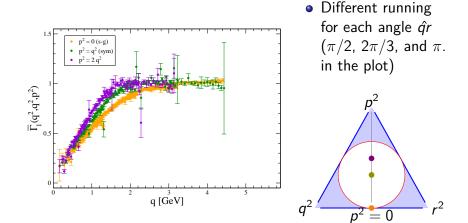

Three-gluon Vertex	Lattice setups	Form Factors	Results	Conclusions
0000000	●	0000	000000	00
Lattice setup	S			

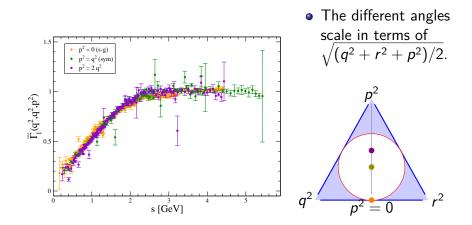
Exploited quenched gauge field configurations with:

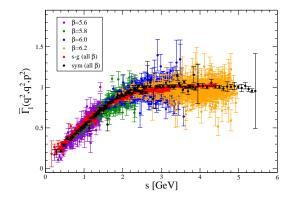

β	L^4/a^4	a (fm)	confs
5.6	32 ⁴	0.236	2000
5.8	32 ⁴	0.144	2000
6.0	32 ⁴	0.096	2000
6.2	32 ⁴	0.070	2000

- Absolute calibration for $\beta = 5.8$ taken from [S. Necco and R. Sommer, Nucl. Phys. B622, 328 (2002)].
- Relative calibrations based in gluon propagator scaling [Phys. Rev. D 98, 114515 (2018)],

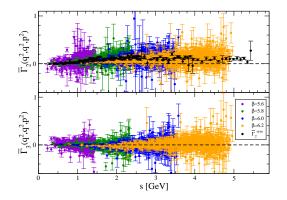



|▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●


- * ロ > * 母 > * き > * き > 「き 」 の < @


▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

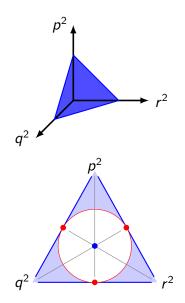

• Scales in terms of $(q^2 + r^2 + p^2)/2$.

• Renormalized

$$\bar{\Gamma}_{3}^{sg}(q^{2})\Big|_{q^{2}=\mu^{2}}=1$$

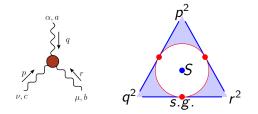
at $\mu = 4.3 GeV$.

イロト イヨト イヨト



- Scales in terms of $(q^2 + r^2 + p^2)/2$.
- Excluded momenta with angles $\hat{qr} \approx 0, \frac{2\pi}{3}, \pi.$
- Smaller than $\overline{\Gamma}_A$.

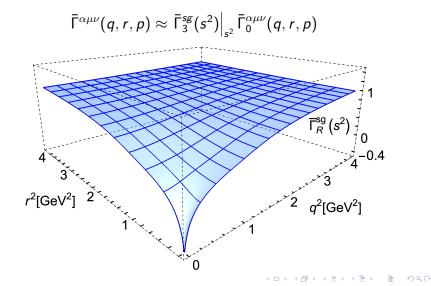
(日)



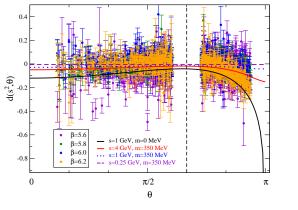
Indeed, the scalar form factors could only depend on symmetric momentum variables [Phys. Rev. D 89, 105014 (2014)]: • $s^2 = \frac{q^2 + r^2 + p^2}{2}$ (plane) • $(q^2 - r^2)^2 + (r^2 - p^2)^2 +$ $(p^2 - q^2)^2$ (radius) • $(q^2 + r^2 - 2p^2)(r^2 + p^2 (2q^2)(p^2 + q^2 - 2r^2)$ (phase)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Scale with $s^2 = (q^2 + r^2 + p^2)/2.$
- $\overline{\Gamma}_A$ dominates.
- $\overline{\Gamma}_B \ll \overline{\Gamma}_A$ (and $\overline{\Gamma}_C, \overline{\Gamma}_D \approx 0$).


- Qualitative agreement between $\bar{\Gamma}_1^{sym}$ and $\bar{\Gamma}_3^{sg}$.
- General case $q^2 \neq r^2 \neq p^2$ studied later.

The full vertex seems to be well described by:

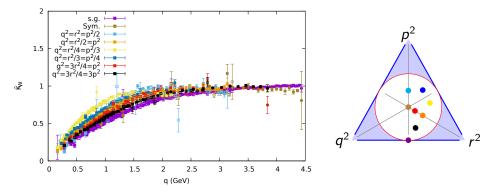

$$ar{\mathsf{\Gamma}}^{lpha\mu
u}(q,r,p)pprox ar{\mathsf{\Gamma}}^{sg}_{3}(s^{2})igert_{s^{2}}ar{\mathsf{\Gamma}}^{lpha\mu
u}_{0}(q,r,p)$$

(日) (四) (日) (日) (日)

Three-gluon Vertex	Lattice setups	Form Factors	Results	Conclusions
0000000	O	0000	0000€0	00
Applications				

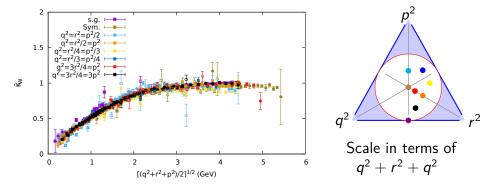
Let us study the contraction:

$$\mathcal{K}_{\mathcal{W}}(q^2,r^2,p^2)=\overline{\mathsf{\Gamma}}^{lpha\mu
u}(q,r,p)\;g_{lpha\mu}(q-r)_
u$$


and compute the ratio to its tree-level counterpart:

$$ar{K}_{\mathcal{W}}(q^2,r^2,p^2) = rac{K_{\mathcal{W}}(q^2,r^2,p^2)}{K^0_{\mathcal{W}}(q^2,r^2,p^2)}$$

Contraction $K_{\mathcal{W}}$


- This contraction leads to Γ_3^{sg} for the soft-gluon case.
- Appears in the context of the Schwinger mechanism for gluon mass generation [Phys.Rev.D 105 (2022) 014030].
- The lattice extraction of $K_{\mathcal{W}}$ does not rely on the tensor decomposition of $\overline{\Gamma}^{\alpha\mu\nu}$.

Three-gluon Vertex	Lattice setups	Form Factors	Results	Conclusions
0000000	O	0000	00000●	00
Applications				

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

	0	0000	000000	00
Application	S			

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Conclusions		
- CONCLUSIONS		

Conclusions

- Computed Landau-gauge 3g vertex for general kinematic configurations from quenched lattice-QCD.
- Nice scaling in terms of a single scale $s^2 = \frac{q^2 + r^2 + p^2}{2}$.
- Dominance of the tree-level tensor $\lambda_A^{\alpha\mu\nu}(q,r,p)$.
- The full vertex can be described from the soft-gluon vertex dressing $\overline{\Gamma}_3^{sg}(s^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

General kinematics three-gluon vertex in Landau-gauge from quenched-lattice QCD

F. Pinto Gómez, F. De Soto, J. Rodríguez-Quintero in collaboration with M. N. Ferreira, J. Papavassiliou

University Pablo de Olavide, Sevilla University de Huelva

The 39th International Symposium on Lattice Field Theory

