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ABSTRACT

In this study, we explore the distribution of energy-momentum
tensor around the static quark and antiquark in SU(3) pure gauge
theory at finite temperature. Double extrapolated transverse dis-
tributions on mid-plane of the flux tube have been presented for
the first time at nonzero temperature. Also, we investigate the
spatial distributions of the flux tube on the source plane obtain-
ing from the stress tensor for several qq̄ separations and temper-
atures above and below the critical temperature. The resultant
distributions show the detailed structure of the flux tube. Finally,
we show the dependence of Fstress that is computed from the in-
tegral of the stress tensor on the distance between the quark and
antiquark on a finer lattice.

INTRODUCTION

In QCD, the study of thermodynamic quantities, such as, energy
density (ε), pressure (p), etc., at high temperature is important to

• describe quark confinement phenomenon,
• study state of quark gluon plasma,
• understand physics of particles from relativistic heavy-ion

collision.

The most convenient method to study these thermodynamic
quantities is to formulate the energy-momentum tensor (EMT).
Also, the energy-momentum tensor is suitable to investigate
the local properties of the field in the gauge invariant manner.
The EMT is four times four dimensional matrix and second-
rank tensor quantity. Expectation values of the elements of

the matrix correspond to the physical quantities. For exam-
ple, −T44(x) = ε(x) (Energy density), Tµν(x) = σµν(x), (µ, ν =
1, 2, 3) (Stress tensor).
The EMT consists of the gauge part and the fermionic part:

Tµν(x) = TGµν(x) + TFµν(x) (1)

TGµν(x) =
1

g20

[
F aµρ(x)F aνρ(x)− 1

4
δµνF

a
ρσ(x)F aρσ(x)

]
(2)

The direct discretization of EMT is non-trivial on the lattice:

T latµν = F latµρ F
lat
νρ −

1

4
δµνF latρσ F

lat
ρσ (3)

lim
a→0

T latµν 6= Tµν −UV fluctuation (4)

METHODS AND SIMULATION

Energy-momentum tensor on the lattice
The Gradient flow method is important tool to formulate the
EMT on the lattice. The EMT is constructed from gauge invariant
flowed operators using small-t expansion as follows, [1]

Tµν(t, x) = c1(t)Uµν(t, x) + 4c2(t)E(t, x), (5)

Uµν(t, x) = Gaµρ(t, x)Gaνρ(t, x)− 1

4
Gaρσ(t, x)Gaρσ(t, x), (6)

E(t, x) =
1

4
Gaρσ(t, x)Gρσ. (7)

Here c1(t) and c2(t) are flow-time dependent, two-loop order per-
turbation coefficents [2, 3]. Then, one can obtain the renormalized
EMT by taking the zero-flow time limit,

TRµν(x) = lim
t→0

Tµν(t, x). (8)

Energy-momentum tensor around the quark and an-
tiquark
In the qq̄ system, the distribution of EMT is computed from the
correlation function of the EMT and Polaykov loops as follows
[4],

〈Tµν(t, x)〉latqq̄ =

〈
Tµν(t, x)Tr

[
L†(0)L(R)

]〉
Tr [L†(0)L(R)]

− 〈Tµν(t, x)〉 .

(9)
The Polyakov loops L(x) represent positions of a quark and an

antiquark located at spatial coordinate x.
We measured not only the EMT, but also the Polyakov loops at
nonzero flow time values.

Simulation parameters
T/Tc N3

σ ×Nτ tT 2 a, fm R, fm Nconf
0.95 323 × 8 0.003 - 0.007 0.086 0.5 - 1.2 1000

483 × 12 0.003 - 0.007 0.058 0.5 - 0.9 1000
643 × 16 0.003 - 0.007 0.044 0.5 - 0.9 500
963 × 20 0.003 - 0.007 0.035 0.5 - 0.8 250

1.44 323 × 8 0.005 - 0.014 0.057 0.5 - 0.9 1000
483 × 12 0.005 - 0.014 0.038 0.5 - 0.8 1000
643 × 16 0.005 - 0.014 0.029 0.5 - 0.6 500
963 × 20 0.005 - 0.014 0.029 0.4 - 0.6 250

Cylindrical coordinate
In order to study transverse distribution of the EMT on the mid-
plane of the flux tube, one needs to transfer into the cylindrical
coordinate system:

Tγγ′ = (eγ)µTµν(eγ′)ν , (γγ
′ = r, θ, z) (10)

r =
√
x2 + y2, θ = tan−1

(y
x

)
, z = z

Tγγ′(r) = diag(T44(r), Trr(r), Tθθ(r), Tzz(r)) (11)

Double extrapolation (a, t)→ (0, 0)
With the aim of extracting renormalized EMT, the continuum
limit and the zero-t limit are taken.

1. Continuum limit (a → 0), T =
1

a(β) ·Nτ
−→1/N2

τ =

(a(β)T )2

2. Zero flow time limit (t→ 0), tT 2 → 0

a. Temperature: T/Tc = 0.95, T/Tc = 1.44,
b. qq̄ separation: R = 0.5 fm, R = 0.7 fm,

c. tT 2 =0.003-0.014,
1

Nτ
.
√

8tT .
RT

3

RESULTS

Stress distribution around the quark and antiquark
on the source plane (z, y)

Tµνn
(k)
ν = λkn

(k)
µ , (k = 1, 2, 3)[5] (12)
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· The shorter distance: At both temperatures, the flux tube can
be observed, but field lines are different.· The middle distance: At T < Tc, the flux tube still persists,
and at T > Tc, the flux tube is beginning to dissociate from
the middle· The larger distance: At both temperatures, the flux tube com-
pletely disappeared. But the disappearance behaviors are
different.

Double extrapolation
Continuum limit (a→ 0)
〈Tµν(t, x)〉lat = 〈Tµν(t, x)〉cont +
bµν(t)

N2
τ

[6]
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Zero-flow time limit(t→ 0)
〈Tµν(t, x)〉cont =

〈
TRµν(x)

〉
+

Cµν(t) · t [6]
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In order to parametrize the transverse profile, we have used these
functions:
Gauss function:
FGauss = A · e−Br2 + C [7]

Bessel function:
FBessel = A·K0(

√
Br2 + C) [8]
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RESULTS

Double extrapolated EMT distribution on midplane
(z = 0, r)
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· At T < Tc and for the shorter distance: The TRzz(r) compo-
nent, along axis connecting quarks, is larger than other two
space-space components and similar to the energy density.· For the larger distance, the TRzz(r) is decreased and simi-
lar to the other two space-space components. When the
distance is increased, the values of all components are de-
creased.· When the temperature is increased, the values of all com-
ponents are decreased and approach zero. Also, the differ-
ence between the energy density and the space-space com-
ponents is decreased.

qq̄ force computed from stress distribution

Fstress = −
∫
S

TµνdSj = 2π

∫ ∞
0

Tzz(r, t)rdr[5] (13)
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· For the temperature below Tc, the dependence of the qq̄
force on temperature is similar to that of the zero temper-
ature QCD, but the magnitude of the force is less than that
of the T = 0.· For the temperature above Tc, the dependence of the qq̄
force on temperature is different from that of the zero tem-
perature QCD, and it is approaching a zero. It may indicate
the color screening phenomenon.

CONCLUSION
We have studied the distribution of the energy-momentum tensor
around the quark and antiquark at high temperature in the SU(3) pure
gauge theory. And we have taken the continuum limit and zero-flow
time limit for the transverse profile on the mid-plane of the flux tube for
the first time at nonzero temperature, successively.

• We explicitly illustrate the dissociation of the flux tube at large
separation is in a different way for the temperatures below and
above critical temperature from stress-tensor distribution on the
source plane. This may indicate that the following phenomena
are occurring:

· T < Tc: String breaking· T > Tc: Color screening

• As T and R are increased: the change of the TRzz(r) behavior and
the decrease of all components and show the flux tube disappear-
ance.

• T < Tc:
〈
TR44(r)

〉
+
〈
TRzz(r)

〉
+
〈
TRθθ(r)

〉
+
〈
TRrr(r)

〉
< 0: similiar to

the QCD vacuum and different from the classical electrodynamics.
• T > Tc:

〈
TR44(r)

〉
+

〈
TRzz(r)

〉
+

〈
TRθθ(r)

〉
+

〈
TRrr(r)

〉
≈ 0: different

from the QCD vacuum and similar to the classical electrodynam-
ics.
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