The Quark-Gluon Vertex from Lattice QCD at Finite Temperature

Jesuel Marques*1, ${ }^{2}$, J-I. Skullerud ${ }^{1}$, P. Silva ${ }^{3}$, G. Kalusche ${ }^{1}$
${ }^{1}$ Maynooth University ${ }^{2}$ University of São Paulo
${ }^{3}$ University of Coimbra
JESUEL.LEAL@USP.BR

The Project

Calculate non-perturbative 2 - and 3-point quark and gluon Green's functions on anisotropic lattices at finite temperature.

Our aim is contribute to answering:

- What is the manifestation of confinement and chiral-symmetry breaking on Green's Functions of QCD?
- How do Green's functions behave across the deconfinement/chiral-symmetry restoration transition?
- Behavior changes quantitatively or qualitatively for different gauges?
- Also provide cross-checks for other nonperturbative methods

Encouragement from SU(2)

In another project of our group at NUIM, the Coulomb and Landau quark propagators in $\mathrm{SU}(2)$ are being calculated.

The (preliminary) mass function seems to have similar behavior in the infrared for both gauges, but with different scales.

Infrastructure and Software

- ICHEC - Kay: 336 nodes 40-core Intel Xeon Gold ea. For inversions and Fourier transform.

- Local Machines: 8-core Intel i3-10100 ea. For gauge-fixing, pre- and postprocessing
- Using C++ USQCD-chroma and C openQCD libraries for inversions, and own C code for gauge-fixing, Fourier transform and form-factor extraction.

FASTSUM Ensembles

Anisotropic lattices $a_{s}=\xi a_{t}$ with improved (plaquettes+rectangles) gluon action given by

$$
\begin{equation*}
\frac{\beta}{N_{c}} S_{G}=\frac{1}{\gamma_{g}}\left[\sum_{n, i<i^{\prime}} c_{0} P_{i i^{\prime}}+c_{1}\left(R_{i i^{\prime}}+R_{i^{\prime}}\right)\right]+\gamma_{g}\left[\sum_{n, i}\left(c_{0}+4 c_{1}\right) P_{i 4}+c_{1}\left(R_{i 4}+R_{4 \mathrm{i}}\right)\right] \tag{1}
\end{equation*}
$$

and action for Wilson fermions $\left(N_{f}=2+1\right): S_{F}=\sum_{x, y} \bar{\psi}_{x} \mathcal{M}_{x y} \psi_{y}$,

$$
\begin{equation*}
\mathcal{M}_{x y}=\left(a_{t} m_{0}+1+\frac{3}{\gamma_{f}}\right) \delta_{x, y}-\frac{1}{\gamma_{f}} \sum_{i=1}^{3} H_{i ; x y}-H_{4 ; x y}-\frac{c_{t}}{2} \sum_{i} \sigma_{i 4} F_{i 4}-\frac{c_{s}}{2} \sum_{i<i^{\prime}} \sigma_{i i^{\prime}} F_{i i^{\prime}} \tag{2}
\end{equation*}
$$

where H_{μ} are hopping terms.
Coeffs. tuned by HadSpec collab. Gen2's physical params. are: $a_{s}=0.1205(8) \mathrm{fm}, \xi=3.444(6)$ and $m_{\pi}=384(4) \mathrm{MeV}$; and Gen2L's: $a_{s}=0.1136(6) \mathrm{fm}, \xi=3.453(6)$ and $m_{\pi}=236(2) \mathrm{MeV}$.

Gauge Fixing - Overrelaxation

Gauge-fixing is necessary to study Green's functions. Number of sweeps to gauge-fix scales linearly with side of lattice when using overrelaxation(OR) algorithm. It is also faster than stochastic overrelaxation (SOR).

- Implemented MPI/OpenMP parallelized version of OR.
- Implemented Coulomb-gauge, more straightforward for anisotropic lattices;

$$
\vec{\nabla} \cdot \vec{A}=0 \Longleftrightarrow \max _{\{g\}} \operatorname{Re} \operatorname{Tr} \sum_{i, n} U_{i}^{g}(n)
$$

- Plan to implement Landau gauge.

Preliminary Results

In momentum space, expected form of the quark propagator is

$$
S^{-1}\left(p_{4}, p\right)=i \vec{\gamma} \cdot \vec{p} A\left(p_{4}, \vec{p}\right)+B\left(p_{4}, \vec{p}\right)+i \gamma_{4} p_{4} C\left(p_{4}, \vec{p}\right)
$$

Displayed is our first result for the Coulombgauge quark mass function B / A for $16^{3} \times 128$ lattice.

- Leading lattice artifacts subtracted.
- Seems to indicate the same behavior present in $\mathrm{SU}(2)$, but at a larger scale, showing the effect of χ-symmetry breaking in the infrared.
- Quark fields still need to be improved.

Next Steps

- Analysis of Coulomb propagator;
- Calculate vertex for selected kinematic configurations;
- Work out vertex tensor decomposition;
- Extend our study to high temperatures and larger volumes.

References

[1] J-I. Skullerud and A. G. Williams. Phys. Rev. D, 63:054508, 2001.
[2] A. Kızılersü et al. Phys. Rev. D, 103:114515, 2021.
[3] O. Oliveira and P. Silva. Eur. Phys. J. C, 79(9):793, 2019.

Acknowledgments

Jesuel Marques has been supported by grants 2019/10913-0 and 2021/11101-9 from the São Paulo Research Foundation (FAPESP). Paulo Silva is supported by FCT contracts UIDB/04564/2020, UIDP / 04564/2020 and CEECIND/00488/2017.

