Thermodynamics with Möbius domain wall fermions near the physical point (I)

JLQCD collaboration:

- Y. Aoki¹ (presenter), S. Aoki^{2,1}, H. Fukaya³, S. Hashimoto^{4,5,1}, I. Kanamori¹, T. Kaneko^{4,5,6}, Y. Nakamura¹, Y. Zhang¹
- 1: R-CCS, 2: YITP, 3: Osaka, 4: KEK, 5: SOKENDAI, 6: KMI

Lattice 2022 @ Bonn August 12, 2022

Two talks for $N_f=2+1$ thermo from JLQCD

- Aoki (I)
 - Set up: LCP, m_{res}
 - Discussion of DWF fermionic measurements and renormalization
- Kanamori (II)
 - Simulations
 - Physical Results

acknowledgements

- Codes used:
 - HMC
 - Grid / Regensburg
 - Measurements:
 - BQCD
 - Bridge++
 - Hadrons / Grid
- MEXT program

「富岳」成果創出加速プログラム

Program for Promoting Researches on the Supercomputer Fugaku

- Simulation for basic science: from fundamental laws of particles to creation of nuclei
- Computers
 - supercomputer Fugaku provided by the RIKEN Center for Computational Science
 - Oakforest-PACS
 - Polaire and Grand Chariot at Hokkaido University

Intro

- N_f=2+1 thermodynamic property
 - through chiral symmetric formulation
 - Order of the transition
 - (pseudo) critical temperature
 - Location of the phase boundary
 - Near the physical point
- Chiral symmetric formulation
 - Ideal to treat flavor SU(2) and U(1)_A properly
 - Domain wall fermion (DWF): practical choice
- DWF and chirality
 - Fine lattice needed
 - Aiming for a < 0.08 fm (eventually)
 - Current search domain: $0.07 \le a \le 0.14$ fm
 - Current criticality range: $0.08 \le a \le 0.13$ fm

$N_f=2+1$ Möbius DWF LCP

For the Line of constant physics: $am_s(\beta)$ with $a(\beta)$

- Step 1: determine $a(\beta)$ [fm] with t_0 (BMW) input
 - at $\beta = 4.1^*, 4.17, 4.35, 4.47$
 - * β =4.1 from unpublished pilot data, to add support at small β
- Step 2: determine $Z_m(\beta)$ using NPR results
 - at $\beta = 4.17, 4.35, 4.47$
 - And use $Z_m(\beta)$ so obtained for $\beta \geq 4.0$: $\beta < 4.17$ region is extrapolation
 - $1/Z_m(\beta)$ will be used to renormalize scalar operator
- Step 3: solve $am_s(\beta)$ with input:
 - $m_s^R = Z_m \cdot am_s^{latt}$ $a^{-1} = 92 \text{ MeV}$
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
- See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation

- Step 4: use $a(\beta)$ including new data at $\beta = 4.0$ (preliminary)
 - For dimension-full quantities

LCP remarks

Features

- Fine lattice: use of existing results $(0.04 \le a \le 0.08 \text{ fm})$
 - Granted preciseness towards continuum limit
- Coarse lattice parametrization is an extrapolation
 - Preciseness might be deteriorated
 - Newly computing Z_m e.g. at $\beta=4.0$ (lower edge) might improve, but not done so far
 - NPR of Z_m at $a^{-1} \simeq 1.4$ GeV may have sizable error (window problem) anyway
- Smooth connection from fine to coarse should not alter leading $O(a^2)$
 - Difference should be higher order
- Error estimated from Kaon mass
 - $\Delta m_K \sim 10 \%$ at $\beta = 4.0 \ (a \simeq 0.14 \text{ fm})$
 - $\Delta m_K^- \sim$ a few % at $\beta = 4.17~(a \simeq 0.08~{\rm fm})$

Domain wall fermion!

- Möbius DWF → OVF by reweighting
 - Successful (w/ error growth) at $\beta = 4.17$ ($a \simeq 0.08$ fm)
 - See Lattice 2021 JLQCD (presenter: K.Suzuki)
 - Questionable for
 - Coarser lattice: rough gauge, DWF chiral symmetry breaking
 - Finer lattice: larger V (# sites)
- Chiral fermion with continuum limit
 - A practical choice is to stick on DWF
- Controlling chiral symmetry breaking with DWF
 - WTI residual mass m_{res} : $m_{\pi}^2 \propto (m_f + m_{res})(1 + h.o.)$
 - Understanding $m_{res}(\beta)$ with fixed L_s (5-th dim size)
- $m_{res}[MeV] \sim a^X$, where $X \sim 5$
 - Vanishes quickly as $a \rightarrow 0$
 - 1st (dumb) approximation: forget about m_{res}
 - Better: $m_f^{cont} \leftrightarrow \left(m_f + m_{res}\right)$ but, this is not always enough

Simulation plan: 1st round

 $L_S = 12$ fixed throughout this study

•
$$N_t = 12$$

•
$$m_l = 0.1 m_s$$

•
$$V_{\rm S} = 24^3$$

•
$$N_t = 16$$

•
$$m_l = 0.1 m_s$$

•
$$V_S = 32^3$$

•
$$N_t = 12$$

•
$$m_l \simeq m_{ud} \rightarrow m_l^{input} = 0$$

•
$$V_s = 24^3$$

Simulation plan: 1st round

 $L_S = 12$ fixed throughout this study

•
$$N_t = 12$$

•
$$m_l = 0.1 m_s$$

•
$$V_{\rm S} = 24^3$$

•
$$N_t = 16$$

•
$$m_l = 0.1 m_s$$

•
$$V_S = 32^3$$

•
$$N_t = 12$$

•
$$m_l \simeq m_{ud} \rightarrow m_l^{input} = 0$$

•
$$V_S = 24^3$$

Simulation plan: 2nd round w/ treatment of m_{res} effect

 $L_s = 12$ fixed throughout this study

•
$$N_t = 12$$

•
$$m_l = 0.1 m_s$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$
 • m_{res} shift by reweighting

•
$$V_s = 24^3$$
, **32**³

•
$$N_t = 16$$

•
$$m_l = 0.1 m_s$$

•
$$V_S = 32^3$$

•
$$N_t = 12$$

•
$$m_l = m_{ud}$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

•
$$V_{\rm s} = 24^3$$

Results and discussion on round 1

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$

- Two step UV renormalization necessary (naively)
 - Logarithmic divergence (multiplicative): $Z_S(\overline{MS}, 2 \text{ GeV})$
 - Power divergence (additive): $\propto m_f a^{-2}$
 - Subtracted using $\langle \overline{s}s \rangle$

Light quark $\Sigma = -\langle \psi \psi \rangle$

- Two step UV renormalization necessary (naively)
 - Logarithmic divergence (multiplicative): $Z_S(\overline{MS}, 2 \text{ GeV})$ $\propto m_f a^{-2}$
 - Power divergence (additive):
 - Subtracted using $\langle \overline{s}s \rangle$

Light quark $\Sigma = -\langle \psi \psi \rangle$

Two step UV renormalization necessary (naively)

 $[\langle \psi \psi \rangle_l - \frac{m_l}{m_s} \langle \psi \psi \rangle_s]^{\overline{MS}} (\mu = 2 \, \mathrm{GeV}) [\mathrm{GeV}^3]$

- Logarithmic divergence (multiplicative): $Z_S(\overline{MS}, 2 \text{ GeV})$
- Power divergence (additive):

I

140

150

160

T [MeV]

180

190

• Subtracted using $\langle \overline{s}s \rangle$

0.03

0.025

0.02

0.015

0.01

0.005

130

190

T [MeV]

0.015

0.01

 $\propto m_f a^{-2}$

Light quark
$$\Sigma = -\langle \overline{\psi}\psi \rangle$$
: residual power divergence

•
$$\Sigma|_{DWF} \sim \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

- $m_{res} \neq x m_{res}$; $x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." S. Sharpe.

"Forget about m_{res} " is dumber for Σ , but...

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: residual power divergence

•
$$\Sigma|_{DWF} \sim \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

- $m_{res} \neq x m_{res}$; $x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." S. Sharpe.
- There is a way to estimate xm_{res} using m'_{res}
 - If chiral symmetry is restored $\rightarrow \Sigma|_{cont.} = 0$
 - $-xm_{res}$ is a zero of $\Sigma|_{DWF}$ which is related with

•
$$m'_{res} = \frac{\sum_{x} \langle J_{5q}(x)P(0)\rangle}{\sum_{x} \langle P(x)P(0)\rangle} \quad (\leftrightarrow m_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0)\rangle}{\sum_{\vec{x}} \langle P(\vec{x},t)P(0)\rangle} \text{ at large } t)$$

• Axial WT identity: $(m_f + m'_{res}) \sum_x \langle P(x) P(0) \rangle = \Sigma$

MDWF $N_f=2+1$, $L_g=12$

"Forget about m_{res} " is dumber for Σ , but...

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: residual power divergence

•
$$\Sigma|_{DWF} \sim \frac{m_f + \chi m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

- $m_{res} \neq x m_{res}$; $x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." S. Sharpe.
- There is a way to estimate xm_{res} using m'_{res}
 - If chiral symmetry is restored $\rightarrow \Sigma|_{cont.} = 0$
 - $-xm_{res}$ is a zero of $\Sigma|_{DWF}$ which is **related** with

•
$$m'_{res} = \frac{\sum_{x} \langle J_{5q}(x)P(0)\rangle}{\sum_{x} \langle P(x)P(0)\rangle} \quad (\Leftrightarrow m_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0)\rangle}{\sum_{\vec{x}} \langle P(\vec{x},t)P(0)\rangle} \text{ at large } t)$$

• Axial WT identity: $(m_f + m'_{res}) \sum_x \langle P(x) P(0) \rangle = \Sigma$

MDWF $N_f = 2+1$, $L_s = 12$

"Forget about m_{res} " is dumber for Σ , but...

m'_{res} : example in N_f =3 case

$$m'_{res} = \frac{\sum_{x} \langle J_{5q}(x)P(0)\rangle}{\sum_{x} \langle P(x)P(0)\rangle}$$

WTI:
$$(m_f + m'_{res}) \sum_x \langle P(x) P(0) \rangle = \Sigma$$

High T "phase"

Subtraction with x = 0.3

Subtraction with x = 0.3 and x = 0

• Note: quark mass tuning w/o caring m_{res}

Round 2 → see next talk

Summary

- Möbius DWF simulation for T>0 with $N_t=12$, 16
 - \leftrightarrow N_t=8 by HotQCD (2012)
- Along the Line of Constant Physics
 - Using quark mass input
- Fixed L_s computation: good chiral symmetry $(a > 0) \rightarrow \text{exact symmetry } (a \rightarrow 0)$
- But, requires a delicate treatment depending on quantity of interest
 - One of the most difficult quantity may be the chiral condensate
 - method to subtract residual power divergence under development
 - Using m'_{res}
 - S. Sharpe's x is not O(1) but seemingly very small (for MDWF)
 - Residual power "divergence" term ($\propto (1-x)$) is larger than that for x=O(1)
- First round simulations with $m_l^{input} = 0.1 \, m_s$, (and 0): $N_s/N_t=2$
 - using Supercomputer Fugaku
 - All results here are still preliminary
- 2nd round and further discussion is given by I. Kanamori

backup

N_f=2+1 Möbius DWF

- $a(\beta)$
- Using
 - JLQCD T=0 lattices with t_0 meas.
 - a=0.080, 0.055, 0.044 fm (published)
 - a=0.095 fm (pilot study) to guide LCP
 - a=0.136 fm added later for precision scale
 - Parameterization of Edwards et al (1998) $a=c_0f(g^2)(1+c_2\hat{a}(g)^2+c_4\hat{a}(g)^4)$.

 - $\hat{a}(g)^2 \equiv [f(g^2)/f(g_0^2)]^2$, $f(g^2) \equiv (b_0 g^2)^{-b_1/2b_0^2} \exp\left(-\frac{1}{2b_0 g^2}\right),$ $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_f \right), \quad b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38N_f}{3} \right),$

• Fit to \hat{a}^4 works well

N_f=2+1 Möbius DWF LCP

- Quark mass as function of β [fixed physics]
- We use quark mass input
 - $m_s = 92 \, MeV$ (MSb 2GeV)
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
 - $m_q^R = Z_m \cdot (am_q^{latt}) \cdot a^{-1}(\beta)$
- Parameterizing $Z_m(\beta)$
 - Take $Z_m(2GeV)$ w/ NPR Tomii et al 2016
 - $Z_m(2GeV) \rightarrow Z_m(a^{-1})$ NNNLO pert.
 - No (large) $\log(a\mu)$
 - Should behave like $1 + d_1g^2 + d_2g^4 + \cdots$
 - Fit $Z_m(a^{-1})$ with $1 + c_1\beta^{-1} + c_2\beta^{-2}$
 - $Z_m(a^{-1}) \to Z_m(2GeV)$ NNNLO pert.

