Thermodynamics with Möbius domain wall fermions near the physical point (I)

JLQCD collaboration:
Y. Aoki ${ }^{1}$ presenter), S. Aoki²,1, H. Fukaya ${ }^{3}$, S. Hashimoto ${ }^{4,5,1,}$
I. Kanamori ${ }^{1}$, T. Kaneko ${ }^{4,5,6}$, Y. Nakamura ${ }^{1}$, Y. Zhang ${ }^{1}$

1: R-CCS, 2: YITP, 3: Osaka, 4: KEK, 5: SOKENDAI, 6: KMI
Lattice 2022 @ Bonn
August 12, 2022

Two talks for $\mathrm{N}_{\mathrm{f}}=2+1$ thermo from JLQCD

- Aoki (I)
- Set up: LCP, $m_{\text {res }}$
- Discussion of DWF fermionic measurements and renormalization
- Kanamori (II)
- Simulations
- Physical Results

acknowledgements

－Codes used：
－HMC
－Grid／Regensburg
－Measurements：
－BQCD
－Bridge＋＋
－Hadrons／Grid
－MEXT program
「富岳」成果創出加速プログラム
Program for Promoting Researches on the Supercomputer Fugaku
－Simulation for basic science：from fundamental laws of particles to creation of nuclei
－Computers
－supercomputer Fugaku provided by the RIKEN Center for Computational Science
－Oakforest－PACS
－Polaire and Grand Chariot at Hokkaido University

Intro

- $\mathrm{N}_{\mathrm{f}}=2+1$ thermodynamic property
- through chiral symmetric formulation
- Order of the transition
- (pseudo) critical temperature
- Location of the phase boundary
- Near the physical point
- Chiral symmetric formulation
- Ideal to treat flavor $S U(2)$ and $U(1)_{\text {A }}$ properly
- Domain wall fermion (DWF) : practical choice
- DWF and chirality
- Fine lattice needed
- Aiming for $a<0.08 \mathrm{fm}$ (eventually)
- Current search domain: $0.07 \leq a \leq 0.14 \mathrm{fm}$
- Current criticality range: $0.08 \leq a \leq 0.13 \mathrm{fm}$

$\mathrm{N}_{\mathrm{f}}=2+1$ Möbius DWF LCP

For the Line of constant physics: $a_{s}(\beta)$ with $a(\beta)$

- Step 1: determine $a(\beta)$ [fm] with t_{0} (BMW) input
- at $\beta=4.1^{*}, 4.17,4.35,4.47$
* $\beta=4.1$ from unpublished pilot data, to add support at small β
- Step 2: determine $Z_{m}(\beta)$ using NPR results
- at $\beta=$
4.17, 4.35, 4.47
- And use $Z_{m}(\beta)$ so obtained for $\beta \geq 4.0: \beta<4.17$ region is extrapolation
- $1 / Z_{m}(\beta)$ will be used to renormalize scalar operator
- Step 3: solve $a m_{s}(\beta)$ with input:
- $m_{s}^{R}=Z_{m} \cdot a m_{s}^{\text {latt }} \cdot a^{-1}=92 \mathrm{MeV}$
- $\frac{m_{S}}{m_{u d}}=27.4$
(See for example FLAG 2019)
- See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation

- Step 4: use $a(\beta)$ including new data at $\beta=4.0$ (preliminary)
- For dimension-full quantities

LCP remarks

Features

- Fine lattice: use of existing results ($0.04 \leq a \leq 0.08 \mathrm{fm}$)
- Granted preciseness towards continuum limit
- Coarse lattice parametrization is an extrapolation

- Preciseness might be deteriorated
- Newly computing Z_{m} e.g. at $\beta=4.0$ (lower edge) might improve, but not done so far
- NPR of Z_{m} at $a^{-1} \simeq 1.4 \mathrm{GeV}$ may have sizable error (window problem) anyway
- Smooth connection from fine to coarse should not alter leading $O\left(a^{2}\right)$
- Difference should be higher order
- Error estimated from Kaon mass
- $\Delta m_{K} \sim 10 \% \quad$ at $\beta=4.0 \quad(a \simeq 0.14 \mathrm{fm})$
- $\Delta m_{K} \sim$ a few $\%$ at $\beta=4.17(a \simeq 0.08 \mathrm{fm})$

Domain wall fermion!

- Möbius DWF \rightarrow OVF by reweighting
- Successful (w/error growth) at $\beta=4.17$ ($a \simeq 0.08 \mathrm{fm}$)
- See Lattice 2021 JLQCD (presenter: K.Suzuki)
- Questionable for
- Coarser lattice: rough gauge, DWF chiral symmetry breaking
- Finer lattice: larger V (\# sites)
- Chiral fermion with continuum limit
- A practical choice is to stick on DWF
- Controlling chiral symmetry breaking with DWF
- WTI residual mass $m_{\text {res }}: m_{\pi}^{2} \propto\left(m_{f}+m_{\text {res }}\right)(1+$ h.o. $)$
- Understanding $m_{r e s}(\beta)$ with fixed L_{s} (5 -th dim size)
- $m_{\text {res }}[\mathrm{MeV}] \sim a^{X}$, where $X \sim 5$
- Vanishes quickly as $a \rightarrow 0$
- 1st (dumb) approximation: forget about $m_{\text {res }}$
- Better : $m_{f}^{\text {cont }} \leftrightarrow\left(m_{f}+m_{\text {res }}\right)$ but, this is not always enough

Simulation plan: $1^{\text {st }}$ round

$L_{S}=12$ fixed throughout this study

-T1-(a)

- $N_{t}=12$
- $m_{l}=0.1 m_{s}$
- $V_{s}=24^{3}$
-T2-(c)
- $N_{t}=16$
- $m_{l}=0.1 m_{s}$
- $V_{s}=32^{3}$
- T1-(b)
- $N_{t}=12$
- $m_{l} \simeq m_{u d} \rightarrow m_{l}^{\text {input }}=0$
- $V_{s}=24^{3}$

Simulation plan: $1^{\text {st }}$ round

$L_{s}=12$ fixed throughout this study

-T1-(a)

- $N_{t}=12$
- $m_{l}=0.1 m_{s}$
- $V_{s}=24^{3}$
-T2-(c)
- $N_{t}=16$
- $m_{l}=0.1 m_{s}$
- $V_{s}=32^{3}$

- T1-(b)
- $N_{t}=12$
- $m_{l} \simeq m_{u d} \rightarrow m_{l}^{\text {input }}=0$
- $V_{s}=24^{3}$

Simulation plan: $2^{\text {nd }}$ round $w /$ treatment of $m_{\text {res }}$ effect

$L_{s}=12$ fixed throughout this study

- T1-(d)
- $N_{t}=12$
- $m_{l}=0.1 m_{s}$
- $m_{q}^{\text {input }}=m_{q}^{L C P}-m_{\text {res }}$
- $V_{S}=24^{3}, 32^{3}$
- T1-(p)
- $N_{t}=12$
- $m_{l}=m_{u d}$
- $m_{q}^{\text {input }}=m_{q}^{L C P}-m_{\text {res }}$
- $V_{s}=24^{3}$
- T2-(c)
- $N_{t}=16$
- $m_{l}=0.1 m_{s}$

- $m_{\text {res }}$ shift by reweighting
- $V_{s}=32^{3}$

Results and discussion on round 1

_ight quark $\Sigma=-\langle\bar{\psi} \psi\rangle$

- Two step UV renormalization necessary (naively)
- Logarithmic divergence (multiplicative): $Z_{S}(\overline{M S}, 2 \mathrm{GeV})$
- Power divergence (additive):
- Subtracted using $\langle\bar{s} s\rangle$

_ight quark $\Sigma=-\langle\bar{\psi} \psi\rangle$

- Two step UV renormalization necessary (naively)
- Logarithmic divergence (multiplicative): $Z_{S}(\overline{M S}, 2 \mathrm{GeV}$)

- Subtracted using $\langle\bar{s} s\rangle$
$\propto m_{f} a^{-2}$

_ight quark $\Sigma=-\langle\bar{\psi} \psi\rangle$

- Two step UV renormalization necessary (naively)
- Logarithmic divergence (multiplicative): $Z_{S}(\overline{M S}, 2 \mathrm{GeV})$
- Power divergence (additive):
$\propto m_{f} a^{-2}$
$m_{\text {res }}=\frac{\langle 0| J_{5 q}|\pi\rangle}{\langle 0| P|\pi\rangle}$
- Subtracted using $\langle\bar{s} s\rangle$

Light quark $\Sigma=-\langle\bar{\psi} \psi\rangle$: residual power divergence

$-\left.\Sigma\right|_{D W F} \sim \frac{m_{f}+x m_{\text {res }}}{a^{2}}+\left.\Sigma\right|_{\text {cont. }}+\cdots$ S. Sharpe (arXiv: 0706.0218)

- $m_{r e s} \neq x m_{r e s} ; \quad x=O(1) \neq 1$
- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_{s} - a very expensive proposition." - S. Sharpe.

"Forget about $m_{\text {res }}$ " is dumber for Σ, but \cdots

Light quark $\Sigma=-\langle\bar{\psi} \psi\rangle$: residual power divergence

$\left.\cdot \Sigma\right|_{D W F} \sim \frac{m_{f}+x m_{\text {res }}}{a^{2}}+\left.\Sigma\right|_{\text {cont. }}+\cdots$ S. Sharpe (arXiv: 0706.0218)

- $m_{\text {res }} \neq x m_{\text {res }} ; \quad x=O(1) \neq 1$
- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_{S} - a very expensive proposition." - S. Sharpe.
- There is a way to estimate $x m_{r e s}$ using m^{\prime} res
- If chiral symmetry is restored $\left.\rightarrow \Sigma\right|_{\text {cont. }}=0$
- $-\boldsymbol{x} \boldsymbol{m}_{\text {res }}$ is a zero of $\left.\Sigma\right|_{D W F}$ which is related with
- $m^{\prime}{ }_{r e s}=\frac{\sum_{x}\left\langle J_{5 q}(x) P(0)\right\rangle}{\sum_{x}\langle P(x) P(0)\rangle} \quad\left(\leftrightarrow m_{\text {res }}=\frac{\sum_{\vec{x}}\left\langle J_{5 q}(\vec{x}, t) P(0)\right\rangle}{\sum_{\vec{x}}\langle P(\vec{x}, t) P(0)\rangle}\right.$ at large $\left.t\right)$

- Axial WT identity: $\left(m_{f}+m_{r e s}^{\prime}\right) \sum_{x}\langle P(x) P(0)\rangle=\Sigma$
"Forget about $m_{\text {res }}$ " is dumber for Σ, but \cdots

Light quark $\Sigma=-\langle\bar{\psi} \psi\rangle$: residual power divergence

$\left.\cdot \Sigma\right|_{D W F} \sim \frac{m_{f}+x m_{\text {res }}}{a^{2}}+\left.\Sigma\right|_{\text {cont. }}+\cdots$ S. Sharpe (arXiv: 0706.0218)

- $m_{\text {res }} \neq x m_{\text {res }} ; \quad x=O(1) \neq 1$
- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_{S} - a very expensive proposition." - S. Sharpe.
- There is a way to estimate $x m_{r e s}$ using $m^{\prime}{ }_{\text {res }}$
- If chiral symmetry is restored $\left.\rightarrow \Sigma\right|_{\text {cont. }}=0$
- $-x m_{\text {res }}$ is a zero of $\left.\Sigma\right|_{D W F}$ which is related with
- $m^{\prime}{ }_{\text {res }}=\frac{\sum_{x}\left\langle J_{5 q}(x) P(0)\right\rangle}{\sum_{x}\langle P(x) P(0)\rangle} \quad\left(\leftrightarrow m_{\text {res }}=\frac{\sum_{\vec{x}}\left\langle J_{5 q}(\vec{x}, t) P(0)\right\rangle}{\sum_{\bar{x}}\langle P(\vec{x}, t) P(0)\rangle}\right.$ at large $\left.t\right)$

- Axial WT identity: $\left(m_{f}+m_{r e s}^{\prime}\right) \sum_{x}\langle P(x) P(0)\rangle=\Sigma$
"Forget about $m_{\text {res }}$ " is dumber for Σ, but \cdots

$m_{\text {res }}$ and $m_{\text {res }}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

$m_{\text {res }}$ and $m_{\text {res }}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

$m_{r e s}$ and $m_{r e s}^{\prime}$ for $N_{f}=2+1$

$m_{\text {res }}$ and $m_{\text {res }}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

High T"phase"

$m_{r e s}$ and $m_{r e s}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

$$
x m_{r e s}=\lim _{T \rightarrow \infty} m_{r e s}^{\prime}
$$

Subtraction with $x=0.3$

$m_{r e s}$ and $m_{r e s}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

$m_{r e s}$ and $m_{r e s}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

$m_{r e s}$ and $m_{r e s}^{\prime}$ for $\mathrm{N}_{\mathrm{f}}=2+1$

Subtraction with $x=0.3$ and $x=0$

$x=0$: this should be closer to the truth

- Note: quark mass tuning w/o caring $m_{\text {res }}$

Round $2 \rightarrow$ see next talk

Summary

- Möbius DWF simulation for $\mathrm{T}>0$ with $\mathrm{N}_{\mathrm{t}}=12,16$
- $\leftrightarrow N_{\mathrm{t}}=8$ by HotQCD (2012)
- Along the Line of Constant Physics
- Using quark mass input
- Fixed L_{s} computation : good chiral symmetry $(a>0) \rightarrow$ exact symmetry $(a \rightarrow 0)$
- But, requires a delicate treatment depending on quantity of interest
- One of the most difficult quantity may be the chiral condensate
- method to subtract residual power divergence under development
- Using $m_{r e s}^{\prime}$
- S. Sharpe's x is not $O(1)$ but seemingly very small (for MDWF)
- Residual power "divergence" term $(\alpha(1-x))$ is larger than that for $x=O(1)$
- First round simulations with $m_{l}^{\text {input }}=0.1 m_{s}$, (and 0$): \mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{t}}=2$
- using Supercomputer Fugaku
- All results here are still preliminary
- $2^{\text {nd }}$ round and further discussion is given by I. Kanamori
backup

$\mathrm{N}_{\mathrm{f}}=2+1$ Möbius DWF

- $a(\beta)$
- Using
- JLQCD T=0 lattices with t_{0} meas.
- $a=0.080,0.055,0.044 \mathrm{fm}$ (published)
- $a=0.095 \mathrm{fm}$ (pilot study) to guide LCP

- $a=0.136 \mathrm{fm}$ added later for precision scale
- Parameterization of Edwards et al (1998)
- $a=c_{0} f\left(g^{2}\right)\left(1+c_{2} \hat{a}(g)^{2}+c_{4} \hat{a}(g)^{4}\right)$.
- $\hat{a}(g)^{2} \equiv\left[f\left(g^{2}\right) / f\left(g_{0}^{2}\right)\right]^{2}$,

$$
\begin{aligned}
f\left(g^{2}\right) & \equiv\left(b_{0} g^{2}\right)^{-b_{1} / 2 b_{0}^{2}} \exp \left(-\frac{1}{2 b_{0} g^{2}}\right), \\
b_{0} & =\frac{1}{(4 \pi)^{2}}\left(11-\frac{2}{3} N_{f}\right), \quad b_{1}=\frac{1}{(4 \pi)^{4}}\left(102-\frac{38 N_{f}}{3}\right),
\end{aligned}
$$

- Fit to \hat{a}^{4} works well

$\mathrm{N}_{\mathrm{f}}=2+1$ Möbius DWF LCP

- Quark mass as function of β [fixed physics]
- We use quark mass input
- $m_{s}=92 \mathrm{MeV} \quad$ (MSb 2GeV)
- $\frac{m_{s}}{m_{u d}}=27.4 \quad$ (See for example FLAG 2019)
- $m_{q}^{R}=Z_{m} \cdot\left(a m_{q}^{\text {latt }}\right) \cdot a^{-1}(\beta)$
- Parameterizing $Z_{m}(\beta)$
- Take $Z_{m}(2 \mathrm{GeV}) \mathrm{w} / \mathrm{NPR}$ Tomii et al 2016
- $Z_{m}(2 \mathrm{GeV}) \rightarrow Z_{m}\left(a^{-1}\right) \quad$ NNNLO pert.
- No (large) $\log (a \mu)$
- Should behave like $1+d_{1} g^{2}+d_{2} g^{4}+\cdots$
- Fit $Z_{m}\left(a^{-1}\right)$ with $1+c_{1} \beta^{-1}+c_{2} \beta^{-2}$
- $Z_{m}\left(a^{-1}\right) \rightarrow Z_{m}(2 G e V)$ NNNLO pert.

