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Two talks for Nf=2+1 thermo from JLQCD
• Aoki (I)
• Set up: LCP, mres
• Discussion of DWF fermionic measurements and renormalization

• Kanamori (II)
• Simulations
• Physical Results



acknowledgements
• Codes used:

• HMC
• Grid / Regensburg

• Measurements:
• BQCD
• Bridge++
• Hadrons / Grid

• MEXT program
「富岳」成果創出加速プログラム
Program for Promoting Researches on the Supercomputer Fugaku

- Simulation for basic science: from fundamental laws of particles to creation of nuclei

• Computers
• supercomputer Fugaku provided by the RIKEN Center for Computational Science
• Oakforest-PACS
• Polaire and Grand Chariot at Hokkaido University



Intro
• Nf=2+1 thermodynamic property 

• through chiral symmetric formulation
• Order of the transition
• (pseudo) critical temperature
• Location of the phase boundary
• Near the physical point

• Chiral symmetric formulation
• Ideal to treat flavor SU(2) and U(1)A properly
• Domain wall fermion (DWF) : practical choice

• DWF and chirality
• Fine lattice needed 
• Aiming for 𝑎 < 0.08 fm (eventually)
• Current search domain:  0.07 ≤ 𝑎 ≤ 0.14 fm
• Current criticality range: 0.08 ≤ 𝑎 ≤ 0.13 fm
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Nf=2+1 Möbius DWF LCP
For the Line of constant physics: 𝑎𝑚!(𝛽) with 𝑎(𝛽)
• Step 1: determine 𝑎(𝛽) [fm] with 𝑡" (BMW) input

• at 𝛽 = 4.1∗, 4.17, 4.35, 4.47
* 𝛽=4.1 from unpublished pilot data,  to add support at small β

• Step 2: determine 𝑍#(𝛽) using NPR results     
• at 𝛽 = 4.17, 4.35, 4.47
• And use 𝑍"(𝛽) so obtained for 𝛽 ≥ 4.0 : 𝛽 < 4.17 region is extrapolation 
• 1/𝑍" 𝛽 will be used to renormalize scalar operator

• Step 3: solve 𝑎𝑚!(𝛽) with input: 
• 𝑚#

$ = 𝑍" ⋅ 𝑎𝑚#
%&''⋅ 𝑎() = 92 MeV

• "!
""#

= 27.4 (See for example FLAG 2019)

• See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation
• Step 4: use 𝑎(𝛽) including new data at 𝛽 = 4.0 (preliminary)

• For dimension-full quantities
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LCP remarks
Features
• Fine lattice: use of existing results (0.04 ≤ 𝑎 ≤ 0.08 fm)

• Granted preciseness towards continuum limit
• Coarse lattice parametrization is an extrapolation

• Preciseness might be deteriorated
• Newly computing 𝑍" e.g. at 𝛽 = 4.0 (lower edge) might improve, but not done so far

• NPR of 𝑍! at 𝑎"# ≃1.4 GeV may have sizable error (window problem) anyway
• Smooth connection from fine to coarse should not alter leading 𝑂 𝑎$

• Difference should be higher order
• Error estimated from Kaon mass

• Δ𝑚# ~ 10 %      at 𝛽 = 4.0 (𝑎 ≃ 0.14 fm)
• Δ𝑚# ~ a few % at 𝛽 = 4.17 (𝑎 ≃ 0.08 fm)
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Domain wall fermion !
• Möbius DWF → OVF by reweighting

• Successful (w/ error growth) at 𝛽 = 4.17 (𝑎 ≃ 0.08 fm)
• See Lattice 2021 JLQCD (presenter: K.Suzuki)

• Questionable for
• Coarser lattice: rough gauge, DWF chiral symmetry breaking
• Finer lattice:     larger V (# sites)

• Chiral fermion with continuum limit
• A practical choice is to stick on DWF

• Controlling chiral symmetry breaking with DWF
• WTI residual mass 𝑚$%&: 𝑚'

( ∝ 𝑚) +𝑚$%& (1 + ℎ. 𝑜. )
• Understanding  𝑚$%& 𝛽 with fixed 𝐿& (5-th dim size)

• 𝑚678[𝑀𝑒𝑉] ∼ 𝑎9,  where 𝑋 ∼ 5
• Vanishes quickly as 𝑎 → 0
• 1st (dumb) approximation: forget about 𝑚$%&

• Better : 𝑚)*+,- ↔ 𝑚) +𝑚$%& but, this is not always enough
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Simulation plan: 1st round

• T2-(c)
• 𝑁, = 16
• 𝑚- = 0.1𝑚.
• 𝑉. = 32/

• T1-(b)
• 𝑁, = 12
• 𝑚- ≃ 𝑚01 → 𝑚-

2340,=0
• 𝑉. = 24/

• T1-(a)
• 𝑁, = 12
• 𝑚- = 0.1𝑚.
• 𝑉. = 24/

4 4.1 4.2 4.3 4.4 4.5
β

1e-05

0.0001

0.001

0.01

m
X

m
s

latt

0.1m
s

latt

m
ud

latt

m
res

; L
s
=8

m
res

; L
s
=12

m
res

; N
f
=3, L

s
=16

𝐿. = 12 fixed throughout this study

4 4.1 4.2 4.3 4.4
β

100

150

200

250

T
 [
M

e
V

]

~T
c
(0.1m

s
)

~T
c
(m

ud
)

T1 T2

(a)

(b)

(c)

N
t
=12

N
t
=14

N
t
=16

N
t
=18

N
t
=20



Simulation plan: 1st round

4 4.1 4.2 4.3 4.4
β

100

150

200

250

T
 [
M

e
V

]

~T
c
(0.1m

s
)

~T
c
(m

ud
)

T1 T2

(a)

(b)

(c)

N
t
=12

N
t
=14

N
t
=16

N
t
=18

N
t
=20

• T2-(c)
• 𝑁, = 16
• 𝑚- = 0.1𝑚.
• 𝑉. = 32/

• T1-(b)
• 𝑁, = 12
• 𝑚- ≃ 𝑚01 → 𝑚-

2340,=0
• 𝑉. = 24/

• T1-(a)
• 𝑁, = 12
• 𝑚- = 0.1𝑚.
• 𝑉. = 24/

𝐿. = 12 fixed throughout this study

4 4.1 4.2 4.3 4.4 4.5
β

1e-05

0.0001

0.001

0.01

m
X

m
s

latt

0.3m
s

latt

0.1m
s

latt

m
ud

latt

m
res

; L
s
=8

m
res

; L
s
=12

m
res

; L
s
=12, N

t
=12

m
res

; L
s
=12, N

t
=16



Simulation plan: 2nd round
w/ treatment of 𝑚!"# effect

• T2-(c)
• 𝑁6 = 16
• 𝑚7 = 0.1𝑚8
• 𝑚9:8 shift by reweighting
• 𝑉8 = 32;

• T1-(p)
• 𝑁6 = 12
• 𝑚7 = 𝑚<=

• 𝑚>
?@A<6 = 𝑚>

BCD −𝑚9:8
• 𝑉8 = 24;

• T1-(d)
• 𝑁6 = 12
• 𝑚7 = 0.1𝑚8

• 𝑚>
?@A<6 = 𝑚>

BCD −𝑚9:8
• 𝑉8 = 24;, 323

𝐿! = 12 fixed throughout this study
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Results and discussion on
round 1



Light quark Σ = −⟨𝜓𝜓⟩
• Two step UV renormalization necessary (naively)
• Logarithmic divergence (multiplicative):  𝑍"(𝑀𝑆, 2 GeV)
• Power divergence (additive):                    ∝ 𝑚# 𝑎$%

• Subtracted using ⟨𝑠𝑠⟩ 6
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Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|/01~

2! 342"#$

5%
+ Σ|6789. +⋯ S. Sharpe (arXiv: 0706.0218)

• 𝑚34! ≠ 𝑥𝑚34!;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. 

It can be studied and reduced only by increasing 𝐿8 - a very expensive 
proposition.” ‒ S. Sharpe.

• There is a way to estimate 𝑥𝑚=>? using 𝑚′=>?
• If chiral symmetry is restored  → Σ|5678. = 0
• −𝒙𝒎𝒓𝒆𝒔 is a zero of Σ|=>? which is related with

• 𝑚′34! =
∑$ ⟨A%& B C(D)⟩
∑$ C(B C(D)⟩ (↔ 𝑚'()=

∑* ⟨,+, .⃗,0 1(3)⟩
∑* ⟨1 .⃗,0 1(3)⟩

at large 𝑡)

• Axial WT identity: (𝑚#+𝑚34!
E )∑B 𝑃(𝑥 𝑃(0)⟩ = Σ “Forget about 𝑚'(!”     

is dumber for Σ, but… 
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𝑚!"#
$ : example in Nf=3 case 𝑚′'(! =

∑* ⟨-+, . /(")⟩
∑* /(. /(")⟩

WTI: (𝑚&+𝑚'(!
3 )∑. 𝑃(𝑥 𝑃(0)⟩ = Σ
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𝑚!"#and 𝑚!"#
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Subtraction with 𝑥 = 0.3
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Subtraction with 𝑥 = 0.3 and 𝑥 = 0
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FIG. 57. the result for b1, � = 4.1 is been updated.• Note: quark mass tuning w/o caring 𝑚=>?
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𝑥 = 0.3 𝑥 = 0 : this should be closer to the truth 



Round 2 → see next talk



Summary
• Möbius DWF simulation for T>0 with Nt=12, 16

• ↔ Nt=8 by HotQCD (2012)

• Along the Line of Constant Physics
• Using quark mass input

• Fixed Ls computation : good chiral symmetry (𝑎 > 0) → exact symmetry (𝑎 → 0)
• But, requires a delicate treatment depending on quantity of interest

• One of the most difficult quantity may be the chiral condensate
• method to subtract residual power divergence under development

• Using 𝑚$%&
'

• S. Sharpeʼs 𝑥 is not 𝑂(1) but seemingly very small (for MDWF)
• Residual power “divergence” term (∝ (1 − 𝑥)) is larger than that for 𝑥 = 𝑂(1)

• First round simulations with 𝑚>
?@ABC = 0.1 𝑚!, (and 0):  Ns/Nt=2

• using Supercomputer Fugaku
• All results here are still preliminary

• 2nd round and further discussion is given by I. Kanamori
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Nf=2+1 Möbius DWF
• 𝑎(𝛽)
• Using
• JLQCD T=0 lattices with 𝑡D meas.

• 𝑎=0.080, 0.055, 0.044 fm (published)
• 𝑎=0.095 fm (pilot study) to guide LCP
• 𝑎=0.136 fm added later for precision scale

• Parameterization of Edwards et al (1998)
•
•

• Fit to @𝑎: works well
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The c2 term is meant to absorb the lattice discretization error. But, in practice it is mostly
playing the role of absorbing the remnant RG scaling beyond two-loop, which can be seen in Fig. 2
where a/f(g2) is plotted. The variation from 11 to 13 is too large to be regarded as a discretization
error. Apart from the role of each terms one wants to check the e↵ectiveness of the formula by
looking at this figure. If the linearity is good we can use Eq. 1 to parameterize the lattice spacing.
It turns out that the linearity is marginally good. But, �2 is large. One may want to add c4â

4

term for a better interpolation.

a = c0f(g
2)(1 + c2â(g)

2 + c4â(g)
4). (5)

We shall adopt this parameterization up to â
4.

B. Quark mass

The strange and average up, down quark masses are well known. To obtain the line of constant
physics given the parameterization of the lattice spacing in the previous subsection, the strange
quark mass input is a simple and seemingly promising way. We use the relation,

m
R
q = Zmm

latt
q · a�1(�), (6)

and

m
latt
q = m

bare
q +mres, (7)

where m
bare
q is the quark mass (of flavor q) in the domain wall fermion action in lattice units and

mres is the residual quark mass due to a finite 5th dimension. We shall use MS scheme at the
renormalization scale µ = 2 GeV. We already have a(�) in Sec. IIA. Once a parameterization of
the quark mass renormalization factor Zm(�) is obtained, mlatt

q (�) may be computed.
We shall use the following numbers for the quark masses for the Nf = 2 + 1 physical point:

ms = 92 MeV (8)

ms/mud = 27.4, (9)

based on the FLAG2019 averages: ms = 92.0(1.1) and ms/mud = 27.42(12). For � � 4.17 the
residual mass is mres . 1 MeV, which is about the same size of the error in ms. Therefore we can
safely neglect the e↵ect of mres for the strange quark mass. The physical ud quark mass is larger
than the residual mass, mphys

ud > mres. However, the size is comparable.
We use Zm obtained for the three finer lattice spacings [2] and try to parameterize as a smooth

function of �. Fig. 3 shows Zm(�) and the interpolation through the data and using a method
described below, which can be extended to a bit of extrapolation to � values we may need.

Let us first determine Zm at the scale µ = a
�1 run from µ = 2 GeV, expecting the large log

e↵ect (log(aµ)) is removed. The running is performed using NNNLO in MS scheme. Resulting
Zm(a�1), which are shown as red squares, have less � dependence. One may expect polynomial in
g
2 works well to parameterize Zm(a�1). Near g2 ! 0 Zm(a�1) may be expanded as

Zm(a�1) = 1 + ĉ1g
2 + ĉ2g

4 + · · · . (10)

Therefore we adopt a fit which is an expansion in �
�1,

Zm(a�1) = 1 + c1�
�1 + c2�

�2
. (11)
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FIG. 1: Lattice spacing as a function of �.

really need to perform extra zero temperature simulations, which tends to be expensive compared
to the finite temperature simulations. Fig. 1 shows the results of the lattice spacing.

There is a method often used to parameterize the lattice spacing as a function of the gauge
coupling using two loop beta function and remnant lattice artifact proposed by SCRI:Edwards et
al [1]

a = c0f(g
2)(1 + c2â(g)

2), (1)

where

â(g)2 ⌘ [f(g2)/f(g20)]
2
, (2)

f(g2) ⌘ (b0g
2)�b1/2b20 exp

✓
� 1

2b0g2

◆
, (3)

b0 =
1

(4⇡)2

✓
11� 2

3
Nf

◆
, b1 =

1

(4⇡)4

✓
102�

38Nf

3

◆
, (4)

where g
2 = 6/�, Nf = 3, c0 and c2 are free parameters of the fit. We take the reference gauge

coupling g0 with beta value of the second finest lattice g
2
0 = 6/4.35. c0f(g2) is the scaling from

the two-loop beta function, which is scheme independent. Beyond two-loop, scheme dependence
generally appears and is not convenient for this purpose.
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FIG. 2: Lattice spacing divided by two-loop scaling as a function of an e↵ective lattice spacing squared.
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Nf=2+1 Möbius DWF LCP
• Quark mass as function of β [fixed physics]
• We use quark mass input

• 𝑚8 = 92 𝑀𝑒𝑉 (MSb 2GeV)
• ED
EEF

= 27.4 (See for example FLAG 2019)

• 𝑚>
F = 𝑍E ⋅ (𝑎𝑚>

7G66) ⋅ 𝑎HI 𝛽

• Parameterizing 𝑍/ 𝛽
• Take 𝑍E 2𝐺𝑒𝑉 w/ NPR  Tomii et al 2016
• 𝑍E 2𝐺𝑒𝑉 → 𝑍E(𝑎HI) NNNLO pert.

• No (large) log(𝑎𝜇)
• Should behave like 1 + 𝑑6𝑔7 + 𝑑7𝑔8 +⋯

• Fit 𝑍E 𝑎HI with 1 + 𝑐I𝛽HI + 𝑐$𝛽H$
• 𝑍E 𝑎HI → 𝑍E 2𝐺𝑒𝑉 NNNLO pert.
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