Progress on the QCD Deconfinement Critical Point for $N_{\rm f}=2$ Staggered Fermions

Reinhold Kaiser in collaboration with Owe Philipsen

Institute for Theoretical Physics - University of Frankfurt

09/08/2022 Lattice 2022 - Bonn

Outline

- **1** The Columbia Plot of QCD
- **2** Simulation Details
- 3 Analysis of the Deconfinement Transition
- 4 Results for the Critical Mass Value
- **5** Development of an Effective Ginzburg-Landau Theory

The Columbia Plot of QCD

- type of thermal transition as function of $m_{u,d}, m_s$
- pure gauge theory: deconfinement due to the spontaneous breaking of the Z₃ center symmetry
- dynamical quarks break center symmetry explicitly

The Columbia Plot of QCD

- type of thermal transition as function of $m_{u,d}, m_s$
- pure gauge theory: deconfinement due to the spontaneous breaking of the Z₃ center symmetry
- dynamical quarks break center symmetry explicitly

Goal

Localize the Z_2 critical point for $N_{\rm f}=2$ with lattice QCD approaching the continuum limit.

 motivation: first principles benchmark for effective theories without sign problem

Simulation Details

discretization of QCD action:

- Wilson gauge action
- Staggered fermion action

parameter	label	values			
am	bare quark mass	5-6 values around			
		am_c			
$N_{ au}$	temporal lattice points	8, 10			
N_{σ}	spatial lattice points	$N_{\sigma}/N_{\tau} \in \{4, 5, 6, 7, 8\}$			
$\beta(a)$	inverse gauge coupling	2-4 values			
		around eta_{c}			

Simulation Details

discretization of QCD action:

- Wilson gauge action
- Staggered fermion action

observable: Polyakov loop $\langle L \rangle$:

$$L = \frac{1}{N_{\sigma}^3} \sum_{\boldsymbol{n}} \frac{1}{3} \operatorname{Tr} \left[\prod_{n_4=0}^{N_{\tau}-1} U_4(\boldsymbol{n}, n_4) \right]$$

 \rightarrow approximate order parameter for deconfinement transition

parameter	label	values		
am	bare quark mass	5-6 values around		
		am_c		
$N_{ au}$	temporal lattice points	8, 10		
N_{σ}	spatial lattice points	$N_{\sigma}/N_{\tau} \in \{4, 5, 6, 7, 8\}$		
$\beta(a)$	inverse gauge coupling	2-4 values		
		around eta_{c}		

¹Pinke et al. 2018 ²Sciarra 2021

Reinhold Kaiser (ITP Frankfurt)

Simulation Details

discretization of QCD action:

Wilson gauge action

parameter

Staggered fermion action

label

observable: Polyakov loop $\langle L \rangle$:

$$L = \frac{1}{N_{\sigma}^3} \sum_{\boldsymbol{n}} \frac{1}{3} \operatorname{Tr} \left[\prod_{n_4=0}^{N_{\tau}-1} U_4(\boldsymbol{n}, n_4) \right]$$

 \rightarrow approximate order parameter for deconfinement transition

Numerical Tools:

- CL²QCD: LQCD code¹ (rhmc executable)
- BaHaMAS: run and monitor LQCD simulations²
- PLASMA: analyze LQCD data

am	bare quark mass	5-6 values around
		am_c
$N_{ au}$	temporal lattice points	8, 10
N_{σ}	spatial lattice points	$N_{\sigma}/N_{\tau} \in \{4, 5, 6, 7, 8\}$
$\beta(a)$	inverse gauge coupling	2-4 values
		around $eta_{m{c}}$

¹Pinke et al. 2018 ²Sciarra 2021

Reinhold Kaiser (ITP Frankfurt)

values

Analysis of the Deconfinement Transition

- distribution of order parameter |L| is continuous for finite systems
- \blacksquare analyze skewness B_3 and kurtosis B_4 of |L|
- $B_3(\beta_c) = 0$ determines β_c
- $B_4(\beta_c) \rightarrow$ information on type of transition

infinite volume kurtosis values

Туре	1. Order	Z_2 (Ising 3D)	Crossover
$B_4(T_c)$	1	$1.604(1)^3$	3

³Blote, Luijten, and Heringa 1995 ⁴Ferrenberg and Swendsen 1989

Analysis of the Deconfinement Transition

- distribution of order parameter |L| is continuous for finite systems
- \blacksquare analyze skewness B_3 and kurtosis B_4 of |L|
- $B_3(\beta_c) = 0$ determines β_c
- $B_4(\beta_c) \rightarrow$ information on type of transition

Туре	1. Order	Z_2 (Ising 3D)	Crossover	
$oldsymbol{B_4}(T_c)$	1	$1.604(1)^3$	3	

infinite volume kurtosis values

- analyze quantities using jackknife resampling
 → determine errors
- reweight with respect to β using multiple histogram method⁴
- extract $B_4(eta_c)$ from reweighted kurtosis data

³Blote, Luijten, and Heringa 1995 ⁴Ferrenberg and Swendsen 1989

Exemplary Analysis of $B_{3,4}$ for am=0.25, $N_{\tau}=10$, $N_{\sigma}=50$

Kurtosis Finite Size Scaling Formula

finite size scaling (FSS) formula for kurtosis of observable⁵ $O = c_M \cdot M$

 $B_4(N_{\sigma}, \beta_c, m) = A + B \cdot x + \mathcal{O}(x^2)$

critical exponents from Ising 3D universality class⁶

$y_t = 1/\nu$	y_t
1.5870(10)	2.4818(3)

⁵Takeda et al. 2017 ⁶Pelissetto and Vicari 2002

Kurtosis Finite Size Scaling Formula

finite size scaling (FSS) formula for kurtosis of observable⁵ $O = c_M \cdot M + c_E \cdot E$

$$B_4(N_{\sigma}, \beta_c, m) = \left(A + B \cdot x + \mathcal{O}(x^2)\right) \\ \times \left(1 + CN_{\sigma}^{y_t - y_h} + \mathcal{O}\left(N_{\sigma}^{2(y_t - y_h)}\right)\right)$$

correction term becomes irrelevant for sufficiently large volumes

• fit kurtosis data to FSS formula to determine m_c

scaling variable
$$x = \left(\frac{1}{m} - \frac{1}{m_c}\right) N_\sigma^{1/\nu}$$

critical exponents from Ising 3D universality class⁶

$y_t = 1/ u$	y_t
1.5870(10)	2.4818(3)

⁵Takeda et al. 2017 ⁶Pelissetto and Vicari 2002

Results for the Critical Mass for $N_{\tau} = 8$

Preliminary Results for the Critical Mass for N_{τ} =10

Results for the Critical Point

- \blacksquare set the scale using w_0 scale^7 based on Wilson flow^8
- pion mass is not resolved by the lattice
- comparison with Wilson fermions⁹

	am	β_{pc}	am_{π}	$a \{ fm \}$	$m_{\pi} \{ \text{GeV} \}$	$T_c \{MeV\}$	m_{π}/T_c
$N = 8 \cdot$	0.5610	5.9859	1.73568(13)	0.0887(9)	3.86(4)	278(3)	13.89
$\tau_{\tau}=0$.	0.6070	5.9940	1.79918(9)	0.0885(9)	4.01(4)	278(3)	14.39
	0.6613	6.0022	1.87063(7)	0.0875(9)	4.22(4)	282(3)	14.97

⁷Borsányi et al. 2010

⁸Lüscher 2010

⁹Cuteri, Philipsen, Schön, et al. 2021

Results for the Critical Point

- set the scale using w_0 scale⁷ based on Wilson flow⁸
- pion mass is not resolved by the lattice
- comparison with Wilson fermions⁹

	am	β_{pc}	am_{π}	$a \{ fm \}$	$m_{\pi} \{ \text{GeV} \}$	$T_c \ \{MeV\}$	m_{π}/T_c
$N_{\tau} = 10$:	0.30	6.0600	1.28023(15)	0.0703(8)	3.60(4)	281(3)	12.80
	0.45	6.1139	1.55837(15)	0.0693(8)	4.44(5)	284(3)	15.58

⁷Borsányi et al. 2010 ⁸Lüscher 2010 ⁹Cutori Bhilinson Schön e

⁹Cuteri, Philipsen, Schön, et al. 2021

- approaching continuum limit via simulations is very cumbersome
- an effective Ginzburg-Landau theory might offer a short-cut

ldea

Find the effective Ginzburg-Landau theory that describes the staggered LQCD data in the neighborhood of the deconfinement critical point.

- approaching continuum limit via simulations is very cumbersome
- an effective Ginzburg-Landau theory might offer a short-cut

ldea

Find the effective Ginzburg-Landau theory that describes the staggered LQCD data in the neighborhood of the deconfinement critical point.

general Landau functional

$$\mathcal{L}(\eta) = C_2(\beta, m)\eta^2 + C_3(\beta, m)\eta^3 + C_4(\beta, m)\eta^4 - h\eta$$

with the order parameter $\eta=2{\rm Re}(L)$ and the symmetry breaking field $h \propto 1/m$

- approaching continuum limit via simulations is very cumbersome
- an effective Ginzburg-Landau theory might offer a short-cut

ldea

Find the effective Ginzburg-Landau theory that describes the staggered LQCD data in the neighborhood of the deconfinement critical point.

general Landau functional

$$\mathcal{L}(\eta) = C_2(\beta, m)\eta^2 + C_3(\beta, m)\eta^3 + C_4(\beta, m)\eta^4 - h\eta$$

with the order parameter $\eta=2{\rm Re}(L)$ and the symmetry breaking field $h \propto 1/m$

- \blacksquare first step: determine Landau coefficients C_i from data for a single N_τ
- expand C_i around the critical values of the parameters (similarly as in Hatta and Ikeda 2003)

$$C_i(\tilde{\beta}, \tilde{m}) = c_{i,0} + c_{i,\beta}\tilde{\beta} + c_{i,m}\tilde{m}$$

with
$$\tilde{\beta} = \frac{\beta - \beta_c}{\beta_c}$$
 and $\tilde{m} = \frac{m_c - m}{m}$

constrain coefficients at the critical point (saddle point condition):

$$\begin{aligned} \mathcal{L}'(\eta_c) &= 0 & \eta_c &= 3/2 \cdot h_c/c_{2,0} \\ \mathcal{L}''(\eta_c) &= 0 & \longrightarrow & c_{3,0} &= -4/9 \cdot c_{2,0}^2/h_c \\ \mathcal{L}'''(\eta_c) &= 0 & c_{4,0} &= 2/27 \cdot c_{2,0}^3/h_c^2 \end{aligned}$$

pseudo-critical line $\beta_{pc}(m)$ for reduced Landau functional $(c_{2,m} = c_{3,\beta} = c_{4,\beta} = c_{4,m} = 0)$:

$$\mathcal{L}'(\eta_{pc}) = 0$$

 $\mathcal{L}'''(\eta_{pc}) = 0$

$$\tilde{\beta}_{pc}(\tilde{m}) = \frac{32c_{2,0}^6(h_c - h) + 27c_{3,m}h_c^2\tilde{m}\left(8c_{2,0}^4 - 36c_{2,0}^2c_{3,m}h_c\tilde{m} + 27c_{3,m}^2h_c^2\tilde{m}^2\right)}{24c_{2,0}^3c_{2,0}h_c\left(9c_{3,m}h_c\tilde{m} - 4c_{2,0}^2\right)}$$

constrain coefficients at the critical point (saddle point condition):

$$\begin{aligned} \mathcal{L}'(\eta_c) &= 0 & \eta_c &= 3/2 \cdot h_c/c_{2,0} \\ \mathcal{L}''(\eta_c) &= 0 & \longrightarrow & c_{3,0} &= -4/9 \cdot c_{2,0}^2/h_c \\ \mathcal{L}'''(\eta_c) &= 0 & c_{4,0} &= 2/27 \cdot c_{2,0}^3/h_c^2 \end{aligned}$$

pseudo-critical line $\beta_{pc}(m)$ for reduced Landau functional $(c_{2,m} = c_{3,\beta} = c_{4,\beta} = c_{4,m} = 0)$:

$$\mathcal{L}'(\eta_{pc}) = 0$$

 $\mathcal{L}'''(\eta_{pc}) = 0$

$$\tilde{\beta}_{pc}(\tilde{m}) = \frac{32c_{2,0}^6(h_c - h) + 27c_{3,m}h_c^2\tilde{m}\left(8c_{2,0}^4 - 36c_{2,0}^2c_{3,m}h_c\tilde{m} + 27c_{3,m}^2h_c^2\tilde{m}^2\right)}{24c_{2,0}^3c_{2,\beta}h_c\left(9c_{3,m}h_c\tilde{m} - 4c_{2,0}^2\right)} - \frac{32c_{2,0}^6h_c^2\tilde{m}^2}{24c_{2,0}^3c_{2,\beta}h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}{24c_{2,0}^6h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}{24c_{2,0}^6h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}{24c_{2,0}^6h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}{24c_{2,0}^6h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}}{24c_{2,0}^6h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}}{24c_{2,0}^6h_c^2\tilde{m}^2} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}}{24c_{2,0}^6h_c^2\tilde{m}^2}} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}{24c_{2,0}^6h_c^2\tilde{m}^2}} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}}{24c_{2,0}^6h_c^2\tilde{m}^2}} + \frac{32c_{2,0}^6h_c^2\tilde{m}^2}$$

- Inear nature of $\beta_{pc}(1/m)$ does not constrain the fit sufficiently
- need more data points outside the linear region

Conclusion and Outlook

- \blacksquare critical quark mass has been found for $N_{\tau}=8$ and preliminary for $N_{\tau}=10$
- fit results for $N_{\tau} = 10$ will improve (currently running simulations)
- too early to perform continuum limit based on simulation data
- \blacksquare at least one larger N_τ must be added in future for continuum limit
- \blacksquare increasing computational effort for larger N_{τ} motivates search for alternative approaches

Conclusion and Outlook

- \blacksquare critical quark mass has been found for $N_{\tau}=8$ and preliminary for $N_{\tau}=10$
- fit results for $N_{\tau} = 10$ will improve (currently running simulations)
- too early to perform continuum limit based on simulation data
- \blacksquare at least one larger N_τ must be added in future for continuum limit
- \blacksquare increasing computational effort for larger N_{τ} motivates search for alternative approaches
- finding the effective Ginzburg-Landau theory in the neighborhood of the deconfinement critical point has been presented
- more data is needed for conclusive fit results
- \blacksquare in future: extension of Ginzburg-Landau theory to several N_{τ}

Thank you for your attention!

Bibliography I

- Blote, H. W. J., E. Luijten, and J. R. Heringa (Nov. 1995). "Ising universality in three dimensions: a Monte Carlo study". In: *Journal of Physics A: Mathematical and General* 28.22, pp. 6289–6313. DOI: 10.1088/0305-4470/28/22/007. URL: https://doi.org/10.1088%2F0305-4470%2F28%2F22%2F007 (cit. on pp. 8, 9).
- Borsányi, Szabolcs et al. (Sept. 2010). "Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III". In: *Journal of High Energy Physics* 2010.9. ISSN: 1029-8479. DOI: 10.1007/jhep09(2010)073. URL: http://dx.doi.org/10.1007/JHEP09(2010)073 (cit. on pp. 15, 16).
- Cuteri, Francesca, Owe Philipsen, Alena Schön, et al. (Jan. 2021). "Deconfinement critical point of lattice QCD with N_f = 2 Wilson fermions". In: *Phys. Rev. D* 103 (1), p. 014513. DOI: 10.1103/PhysRevD.103.014513. URL: https://link.aps.org/doi/10.1103/PhysRevD.103.014513 (cit. on pp. 15, 16).
- Cuteri, Francesca, Owe Philipsen, and Alessandro Sciarra (Nov. 2021). "On the order of the QCD chiral phase transition for different numbers of quark flavours". In: *Journal of High Energy Physics* 2021.11. DOI: 10.1007/jhep11(2021)141. URL: https://doi.org/10.1007%2Fjhep11%282021%29141 (cit. on pp. 3, 4).

Bibliography II

- Ferrenberg, Alan M. and Robert H. Swendsen (Sept. 1989). "Optimized Monte Carlo data analysis". In: Phys. Rev. Lett. 63 (12), pp. 1195–1198. DOI: 10.1103/PhysRevLett.63.1195. URL: https://link.aps.org/doi/10.1103/PhysRevLett.63.1195 (cit. on pp. 8, 9).
- Hatta, Yoshitaka and Takashi Ikeda (Jan. 2003). "Universality, the QCD critical and tricritical point, and the quark number susceptibility". In: *Physical Review D* 67.1. DOI: 10.1103/physrevd.67.014028. URL: https://doi.org/10.1103%2Fphysrevd.67.014028 (cit. on pp. 17–19).
- Lüscher, Martin (Aug. 2010). "Properties and uses of the Wilson flow in lattice QCD". In: Journal of High Energy Physics 2010.8. ISSN: 1029-8479. DOI: 10.1007/jhep08(2010)071. URL: http://dx.doi.org/10.1007/JHEP08(2010)071 (cit. on pp. 15, 16).
- Pelissetto, Andrea and Ettore Vicari (Oct. 2002). "Critical phenomena and renormalization-group theory". In: *Physics Reports* 368.6, pp. 549–727. ISSN: 0370-1573. DOI: 10.1016/s0370-1573(02)00219-3. URL:

http://dx.doi.org/10.1016/S0370-1573(02)00219-3 (cit. on pp. 11, 12).

Pinke, Christopher et al. (Sept. 2018). CL2QCD. Version v1.0. DOI: 10.5281/zenodo.5121895. URL: https://doi.org/10.5281/zenodo.5121895 (cit. on pp. 5-7).

Bibliography III

- Sciarra, Alessandro (Feb. 2021). BaHaMAS. Version BaHaMAS-0.4.0. DOI: 10.5281/zenodo.4577425. URL: https://doi.org/10.5281/zenodo.4577425 (cit. on pp. 5-7).
- Takeda, Shinji et al. (2017). "Update on Nf=3 finite temperature QCD phase structure with Wilson-Clover fermion action". In: *PoS* LATTICE2016, p. 384. DOI: 10.22323/1.256.0384. arXiv: 1612.05371 [hep-lat] (cit. on pp. 11, 12).