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MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
for an impact parameter b = 10 fm & Deng and Huang 2012.
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Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
for an impact parameter b = 10 fm & Deng and Huang 2012.

Caveats:
1. B and E are highly non-homogeneous.
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Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
for an impact parameter b = 10 fm & Deng and Huang 2012.

Caveats:
1. B and E are highly non-homogeneous.
2. Areal E leads to sign problem.
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Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
for an impact parameter b = 10 fm & Deng and Huang 2012.

Caveats:
1. B and E are highly non-homogeneous.
2. Areal E leads to sign problem.

3. No Minkoswki time evolution from
Euclidean simulations.
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Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
for an impact parameter b = 10 fm & Deng and Huang 2012.

Caveats: What can we do?

1. B and E are highly non-homogeneous.
2. Areal E leads to sign problem.

3. No Minkoswki time evolution from
Euclidean simulations.
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MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
for an impact parameter b = 10 fm & Deng and Huang 2012.

Caveats: What can we do?

1. B and E are highly non-homogeneous.

2. Areal E leads to sign problem. B(z) as .
3. No Minkoswki f ution f background in
. No Minkoswki time evolution from lattice QCD!

Euclidean simulations.
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Construction of the links:
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L.L, B=V xA
Aj=Br A,=A.=A, =0
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UNIFORM MAGNETIC FIELD ON THE LATTICE

gluon field — U,, € SU(3)
magnetic field — u,, = e94x € U(1)

Construction of the links:

B=V xA
AU:BJZ AI:Az:At:O

e BLy ifx =L, —a
’““T = .
1 ifx#£L,—a

Uy = ewBr 0<x<L,—a

Uy, = Up = 1
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INHOMOGENEOUS MAGNETIC FIELD ON THE LATTICE

B .
— —22: S —
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COs I . —— =5
£=10
£=w

Profile motivated by heavy-ion collision 5

scenarios & Deng and Huang 2012, & Cao 2%

2

2018. 7 =
TNy __"-/'//// Q\:
gB=——""0 __ N,eZ ;
Lyetanh (Tz) 0.0 25 5.0 )Z/Sa 10.0 125 150

L

%) ifr= L,—a
ifx£L, —a

e—Qidey tanh(

qBE[tanh( %‘/2 )+tanh( & )]




Lattice simulations




Strongly magnetized physical systems Magnetic field on the lattice Lattice simulations Summary & Conclusions References
[e]e]e} [e]e]e} O@00000000 [e]e]




Strongly magnetized physical systems Magnetic field on the lattice Lattice simulations Summary & Conclusions References
[e]e]e} [e]e]e} O@00000000 [e]e]

* Improved staggered fermions with Ny = 2 4 1 flavors and
physical masses;
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* Improved staggered fermions with Ny = 2 4 1 flavors and
physical masses;

- Lattices: 16 x 6 243 x8 283 x10 36>x12 —
continuum limit (lattice spacing — 0, V' = const.);
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* Improved staggered fermions with Ny = 2 4 1 flavors and
physical masses;

- Lattices: 16 x 6 243 x8 283 x10 36>x12 —
continuum limit (lattice spacing — 0, V' = const.);

» Number of gauge confiigurations ~ ©(200) - O(700);
» Magnetic field
37TNb

B
25 eB=—""0 (X 0.61m
cosh(x - Lw/2> Lyetanh (5=)
€

strength 0 GeV < veB < 1.2 GeV,
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THE SIMULATION SET UP

References

* Improved staggered fermions with Ny = 2 4 1 flavors and
physical masses;

o Lattices: 162 x 6 243 x 8 283 x 10 363 x 12 —
continuum limit (lattice spacing — 0, V' = const.);

» Number of gauge confiigurations ~ O(200) - O(700);

» Magnetic field
B B 3’/TN1,

z eB= ———
Cosh(m _ Lz/2)2 Lye tanh (5z)
€

strength 0 GeV < veB < 1.2 GeV;

€~ 0.6 fm

» Temperature range 68 MeV < T < 300 MeV (crossover transition

at T, ~ 155 MeV).
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+ Local chiral condensates (u and d quarks!)
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+ Local chiral condensates (u and d quarks!)

Gy Tenormalization, g gy — ud

[’(Z)’(ﬂ(x, T7 B) - ’J}w(xv T7 0)]

4
mr



Strongly magnetized physical systems Magnetic field on the lattice Lattice simulations Summary & Conclusions References
[e]e]e} [e]e]e} OO@0000000 [e]e]

+ Local chiral condensates (u and d quarks!)

o SRR, 5, T,B) = T [du(e, T, B) — (. T,0)]

* Local Polyakov loop

ZReTrHUt x,Y,2,n)

Yoyz

P =
LL
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+ Local chiral condensates (u and d quarks!)

Muyd

Gy fenomalization, g gy i (99T B) =99 (z, T, 0)]

* Local Polyakov loop

ZRe’I‘rH Ui(z,y, 2z,n) renormalization P (x, T, B)

Yoyz

P =
LL
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+ Local chiral condensates (u and d quarks!)

1; w renormalization D (x’ T, B) Muyd

[Wb(w T,B) — ¢ (x,T,0)]

* Local Polyakov loop

Z ReﬁH Ut Ty, 2, n renormalization P(x, T, B)

Yoyz

L

* Local electric currents (u, d and s quarks!)

2 . 1. 1 .
<Ji(x))—e<§u7u gdyd 3s'ys>
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T=113 MeV
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What happens to the peak of the condensate as a function of 7" and B?
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CHIRAL CONDENSATE - (T, B) = Tn—fg[v,/?qp(T, B) — (T, 0)]

What happens to the peak of the condensate as a function of 7" and B?

Renormalized chiral condensate ¥(x=0,T, B)

0.015
0.010
s 0.005
Q
=
~
0.000
-0.005

0.0 0.1 0.2 0.3 0.4
VeB (GeV)

» Magnetic catalysis T away from T'c
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CHIRAL CONDENSATE - (T, B) = %—’g[ﬁw(T, B) — (T, 0)]

What happens to the peak of the condensate as a function of 7" and B?

Renormalized chiral condensate ¥(x=0,T, B)
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» Magnetic catalysis T away from T'c
* Inverse catalysis for T around T, & Endrédi et al. 2019
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The Polyakov loop is typically broader
than the chiral condensate.
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POLYAKOV LOOP - P(z,T, B)/P(x,T,0)

Summary & Conclusions

References

continuum fimit
—#- 16°x6
247x8
—— 28°x10
—— 36°x 12

T=113 Mev
VeB =0.80 Gev

0
x (fm)

continuum fimit

- 16°x6
T=155 MeV 28
VeB =0.80 GeV —— 28°x 10
- 36'x12

The Polyakov loop is typically broader

than the chiral condensate.

(Pv(2)P(y) ) — (Wu(x) ) ( P(z))

T=155 MeV

20
15
N
10
5
0
0 5 10 15 20
x

0.000

~0.005

-0.010

-0.015

~0.020

~0.025

~0.030

-0.035

~0.040



Strongly magnetized physical systems Magnetic field on the lattice Lattice simulations Summary & Conclusions References
000 000 0000008000 00

POLYAKOV LOOP - P(z,T, B)/P(x,T,0)

The Polyakov loop is typically broader
than the chiral condensate.
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Figure 6: Lattice electric currents for LHC-like (veB = 0.5 GeV) and
RHIC-like (veB = 0.1 GeV) magnetic fields, respectively. 12
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* Linear response term:
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MiB:H—‘rM — JtOtZJf+Jm — J.=V XM
0

* Linear response term:
M=~ y.,H

X vy wB=J,
1+ Xm
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The divergence is independent of T: X" (T) = xm(T) — xm(0)
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The divergence is independent of T: X" (T) = xm(T) — xm(0)
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The divergence is independent of T: X" (T) = xm(T) — xm(0)
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The divergence is independent of T x7.(T') = xm(T) — xm(0)
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The divergence is independent of T x7.(T') = xm(T) — xm(0)
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Great agreement with the current-current method! ¢ Bali, Gergely Endrédi,
and Piemonte 2020 14
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» Prominent electric currents for LHC-like magnetic fields and
stronger;

» Using J,,, and Maxwell’s equations we introduced a new method
to compute xm;
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+ Aricher scenario emerges in the presence of an inhomogeneous
B (dips, steady eletric currents, etc.);

* Prominent electric currents for LHC-like magnetic fields and
stronger;

» Using J,,, and Maxwell’s equations we introduced a new method
to compute x,;

+ Our ., corroborates the picture of weak diamagnetism in QCD
for T < T, and strong paramagnetism for 7" > T,;

» The knowledge of these processes is important to capture the
correct physics in heavy-ion collision studies (QCD models,
hydrodynamics, etc.);

» More on electromagnetic fields in lattice QCD: talk by Javier
Hernandez today at 14:50!
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B QUANTIZATION CONDITION

- (anti-)periodic BC
fermion fields — ), ¢

gluon fields — U, = ™4™ e SU(3)
magnetic field — u,, = e?294x € U(1)

B =152
Stoke’s theorem must hold on the torus.

inner area: ]{Aﬂdx“ =SB

outer area: ]{ A,dx, = (LyL, — S)B
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INHOMOGENEOUS ¢)(z) VS HOMOGENEOUS ¢%)( B(7))
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CORRELATIONS WITH P
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BEYOND LINEAR RESPONSE IN Y,

mB: m(0
Xon(B) = (0) + 282 4 &

To compute the non-linear dependence of x,, on B

'BQ + 'B4 +O(B%)

M(r)* ! /lem(rr B)B( )

Mo



	Strongly magnetized physical systems
	Magnetic field on the lattice
	Lattice simulations
	Summary & Conclusions
	References
	Appendix

