

Lattice QCD with an inhomogeneous magnetic field background

Lattice conference 2022, Bonn, Germany

Dean Valois dvalois@physik.uni-bielefeld.de

Gergely Endrődi Bastian Brandt Gergely Marko Francesca Cuteri August 12, 2022

Physics Department Bielefeld University

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References

OUTLINE

- 1. Strongly magnetized physical systems
- 2. Magnetic field on the lattice
- 3. Lattice simulations
- 4. Summary & Conclusions

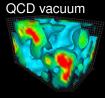
Magnetic field on the lattice

Lattice simulations

ummary & Conclusions

References

STRONGLY MAGNETIZED PHYSICAL SYSTEMS

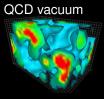

Magnetic field on the lattice

Lattice simulations

ummary & Conclusions

References

STRONGLY MAGNETIZED PHYSICAL SYSTEMS


Magnetic field on the lattice

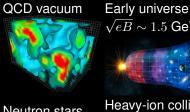
Lattice simulations

ummary & Conclusions

References

STRONGLY MAGNETIZED PHYSICAL SYSTEMS

Neutron stars $\sqrt{eB} \sim 1 \text{ MeV}$

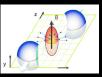

2

Strongly	magnetized physical systems	
000		

Lattice simulations

References

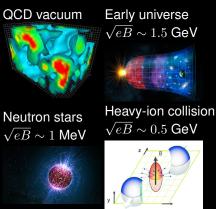
STRONGLY MAGNETIZED PHYSICAL SYSTEMS

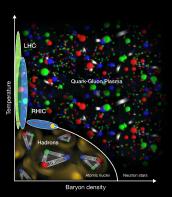

Heavy-ion collision

 $\sqrt{eB} \sim 0.5 \text{ GeV}$

 $\sqrt{eB} \sim 1.5 \text{ GeV}$

Neutron stars $\sqrt{eB} \sim 1 \text{ MeV}$


Magnetic field on the lattice


Lattice simulations

Summary & Conclusions

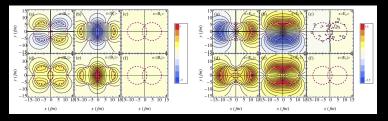
References

STRONGLY MAGNETIZED PHYSICAL SYSTEMS

2

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	0000000000	00	

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

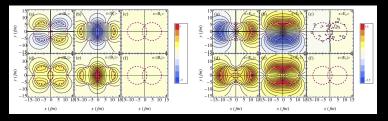

Strongly	magnetized physical systems	
000		

Lattice simulations

Summary & Conclusions

References

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS


Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields for an impact parameter b = 10 fm \checkmark Deng and Huang 2012.

Lattice simulations

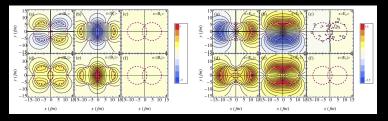
ummary & Conclusions

References

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields for an impact parameter b = 10 fm \checkmark Deng and Huang 2012.

Caveats:


1. **B** and **E** are highly non-homogeneous.

Lattice simulations

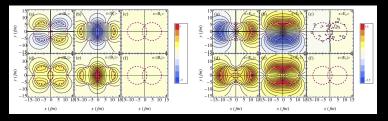
ummary & Conclusions

References

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields for an impact parameter b = 10 fm \checkmark Deng and Huang 2012.

Caveats:


- 1. **B** and **E** are highly non-homogeneous.
- 2. A real E leads to sign problem.

Lattice simulations

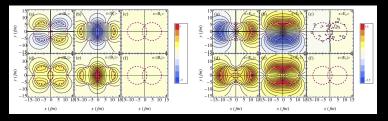
Summary & Conclusions

References

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields for an impact parameter b = 10 fm \checkmark Deng and Huang 2012.

Caveats:


- 1. **B** and **E** are highly non-homogeneous.
- 2. A real E leads to sign problem.
- 3. No Minkoswki time evolution from Euclidean simulations.

Lattice simulations

Summary & Conclusions

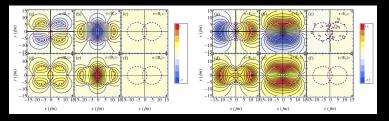
References

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields for an impact parameter b = 10 fm \checkmark Deng and Huang 2012.

Caveats:

What can we do?


- 1. **B** and **E** are highly non-homogeneous.
- 2. A real E leads to sign problem.
- 3. No Minkoswki time evolution from Euclidean simulations.

Lattice simulations

Summary & Conclusions

References

MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields for an impact parameter b = 10 fm \checkmark Deng and Huang 2012.

Caveats:

- 1. **B** and **E** are highly non-homogeneous.
- 2. A real **E** leads to sign problem.
- 3. No Minkoswki time evolution from Euclidean simulations.

What can we do?

```
B(x) as
background in
lattice QCD!
```

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	0000000000	00	

UNIFORM MAGNETIC FIELD ON THE LATTICE

$$qB = \frac{2\pi N_b}{L_x L_y}, \quad N_b \in \mathbb{Z}$$

Magnetic field on the lattice

Lattice simulations

ummary & Conclusions

References

UNIFORM MAGNETIC FIELD ON THE LATTICE

gluon field $\longrightarrow U_{\mu} \in SU(3)$

$$qB = \frac{2\pi N_b}{L_x L_y}, \quad N_b \in \mathbb{Z}$$

Magnetic field on the lattice

Lattice simulations

ummary & Conclusions

References

UNIFORM MAGNETIC FIELD ON THE LATTICE

gluon field $\longrightarrow U_{\mu} \in SU(3)$ magnetic field $\longrightarrow u_{\mu} = e^{iaqA_{\mu}} \in U(1)$

$$qB = \frac{2\pi N_b}{L_x L_y}, \quad N_b \in \mathbb{Z}$$

Magnetic field on the lattice

Lattice simulations

Summary & Conclusions

References

UNIFORM MAGNETIC FIELD ON THE LATTICE

gluon field $\longrightarrow U_{\mu} \in SU(3)$ magnetic field $\longrightarrow u_{\mu} = e^{iaqA_{\mu}} \in U(1)$

Construction of the links:

$$qB = \frac{2\pi N_b}{L_x L_y}, \quad N_b \in \mathbb{Z}$$

 $\mathbf{B} = \boldsymbol{\nabla} \times \mathbf{A}$ $A_y = Bx \qquad A_x = A_z = A_t = 0$

Magnetic field on the lattice

Lattice simulations

Summary & Conclusions

References

UNIFORM MAGNETIC FIELD ON THE LATTICE

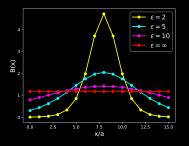
gluon field $\longrightarrow U_{\mu} \in SU(3)$ magnetic field $\longrightarrow u_{\mu} = e^{iaqA_{\mu}} \in U(1)$

Construction of the links:

 $qB = \frac{2\pi N_b}{L_x L_y}, \quad N_b \in \mathbb{Z}$

 $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$ $A_y = Bx \quad A_x = A_z = A_t = 0$

$$u_x = \begin{cases} e^{-iqBL_xy} & \text{if } x = L_x - a \\ 1 & \text{if } x \neq L_x - a \end{cases}$$
$$u_y = e^{iaqBx} & 0 \le x \le L_x - a$$
$$u_z = u_t = 1$$


000 00 ● 00000000 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

INHOMOGENEOUS MAGNETIC FIELD ON THE LATTICE

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \hat{z}$$

Profile motivated by heavy-ion collision scenarios & Deng and Huang 2012, & Cao 2018.

$$qB = \frac{\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad N_b \in \mathbb{Z}$$

$$u_x = \begin{cases} e^{-2iqB\epsilon y \tanh\left(\frac{L_x}{2\epsilon}\right)} & \text{if } x = L_x - a\\ 1 & \text{if } x \neq L_x - a \end{cases}$$
$$u_y = e^{iaqB\epsilon \left[\tanh\left(\frac{x-L_x/2}{\epsilon}\right) + \tanh\left(\frac{L_x}{2\epsilon}\right)\right]}, \quad 0 \le x \le L_x - a$$
$$u_z = u_t = 1$$

Lattice simulations

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

	ttice Lattice simulations	Summary & Conclusions	References
000 000	000000000	00	

• Improved staggered fermions with $N_f = 2 + 1$ flavors and physical masses;

000 00000000 00 00 00 00 00 00 00 00 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

- Improved staggered fermions with $N_f = 2 + 1$ flavors and physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);

000 0000000 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

- Improved staggered fermions with $N_f = 2 + 1$ flavors and physical masses;
- Lattices: $16^3 \times 6$ $24^3 \times 8$ $28^3 \times 10$ $36^3 \times 12 \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);
- Number of gauge confiigurations $\sim \mathcal{O}(200)$ $\mathcal{O}(700)$;

000 0000000 00 00 00 00 00 00 00 00 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

- Improved staggered fermions with $N_f = 2 + 1$ flavors and physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);
- Number of gauge confiigurations $\sim \mathcal{O}(200)$ $\mathcal{O}(700)$;
- Magnetic field

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \hat{z} \qquad eB = \frac{3\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad \epsilon \approx 0.6 \text{ fm}$$

strength $0 \text{ GeV} \le \sqrt{eB} \le 1.2 \text{ GeV};$

000 0000000 00 00 00 00 00 00 00 00 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

- Improved staggered fermions with $N_f = 2 + 1$ flavors and physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);
- Number of gauge confiigurations $\sim \mathcal{O}(200)$ $\mathcal{O}(700)$;
- Magnetic field

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \hat{z} \qquad eB = \frac{3\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad \epsilon \approx 0.6 \text{ fm}$$

strength 0 GeV $\leq \sqrt{eB} \leq 1.2$ GeV;

• Temperature range 68 MeV $\leq T \leq$ 300 MeV (crossover transition at $T_c \sim 155$ MeV).

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

000 000 000 00 00 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

• Local chiral condensates (u and d quarks!)

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

• Local chiral condensates (u and d quarks!)

$$\bar{\psi}\psi \xrightarrow{\text{renormalization}} \Sigma(x,T,B) = \frac{m_{ud}}{m_{\pi}^4} \left[\bar{\psi}\psi(x,T,B) - \bar{\psi}\psi(x,T,0) \right]$$

000 00000000 000 000 000 000 000 000 0	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	0000000000	00	

• Local chiral condensates (u and d quarks!)

$$\bar{\psi}\psi \quad \xrightarrow{\text{renormalization}} \quad \Sigma(x,T,B) = \frac{m_{ud}}{m_{\pi}^4} \left[\bar{\psi}\psi(x,T,B) - \bar{\psi}\psi(x,T,0) \right]$$

· Local Polyakov loop

$$P = \frac{1}{L_x L_y} \sum_{y,z} \operatorname{Re} \operatorname{Tr} \prod_n U_t(x, y, z, n)$$

000 00000000 000 000 000 000 000 000 0	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	0000000000	00	

• Local chiral condensates (u and d quarks!)

$$\bar{\psi}\psi \quad \xrightarrow{\text{renormalization}} \quad \Sigma(x,T,B) = \frac{m_{ud}}{m_{\pi}^4} \left[\bar{\psi}\psi(x,T,B) - \bar{\psi}\psi(x,T,0) \right]$$

Local Polyakov loop

$$P = \frac{1}{L_x L_y} \sum_{y,z} \operatorname{Re} \operatorname{Tr} \prod_n U_t(x, y, z, n) \quad \xrightarrow{\text{renormalization}} \quad \frac{P(x, T, B)}{P(x, T, 0)}$$

000 00000000 000 000 000 000 000 000 0	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

Local chiral condensates (u and d quarks!)

$$\bar{\psi}\psi \quad \xrightarrow{\text{renormalization}} \quad \Sigma(x,T,B) = \frac{m_{ud}}{m_{\pi}^4} \left[\bar{\psi}\psi(x,T,B) - \bar{\psi}\psi(x,T,0) \right]$$

Local Polyakov loop

$$P = \frac{1}{L_x L_y} \sum_{y,z} \operatorname{Re} \operatorname{Tr} \prod_n U_t(x, y, z, n) \quad \xrightarrow{\text{renormalization}} \quad \frac{P(x, T, B)}{P(x, T, 0)}$$

• Local electric currents (u, d and s quarks!)

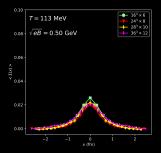
$$\langle J_i(x) \rangle = e \left\langle \frac{2}{3} \bar{u} \gamma^i u - \frac{1}{3} \bar{d} \gamma^i d - \frac{1}{3} \bar{s} \gamma^i s \right\rangle$$

Magnetic field on the lattice

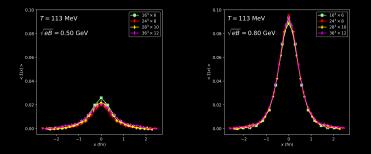
Lattice simulations

mmary & Conclusions

References


Chiral condensate - $\Sigma(T,B) = \frac{m_{ud}}{m_{\pi}^4} [\bar{\psi}\psi(T,B) - \bar{\psi}\psi(T,0)]$

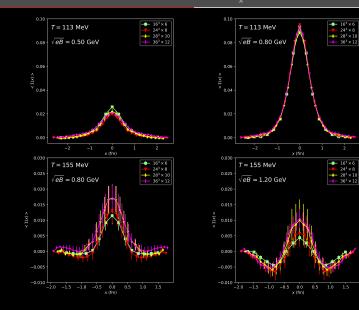
Magnetic field on the lattice


Lattice simulations

ummary & Conclusions

References

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References

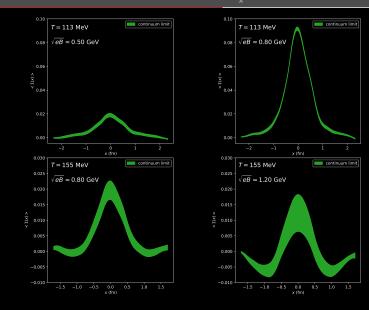


Magnetic field on the lattice

Lattice simulations

Summary & Conclusions

References

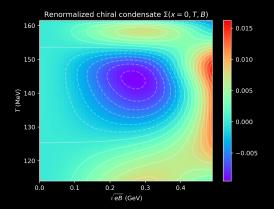

Strongly	magnetized	physical	systems

Magnetic field on the lattice

Lattice simulations

Summary & Conclusions

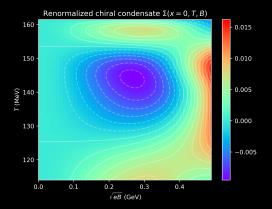
References



Chiral condensate - $\Sigma(T,B) = \frac{m_{ud}}{m_{\pi}^4} [\bar{\psi}\psi(T,B) - \bar{\psi}\psi(T,0)]$

What happens to the peak of the condensate as a function of T and B?

What happens to the peak of the condensate as a function of T and B?



Magnetic catalysis T away from Tc

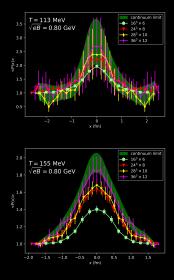
CHIRAL CONDENSATE - $\Sigma(T,B) = \frac{m_{ud}}{m^4} [\bar{\psi}\psi(T,B) - \bar{\psi}\psi(T,0)]$

What happens to the peak of the condensate as a function of T and B?

- Magnetic catalysis T away from Tc
- Inverse catalysis for T around T_c P Endrődi et al. 2019

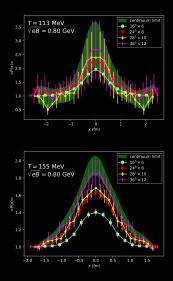
Magnetic field on the lattice

Lattice simulations


ummary & Conclusions

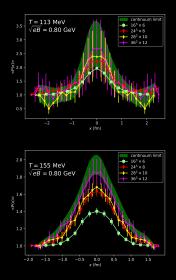
References

Polyakov loop - P(x,T,B)/P(x,T,0)

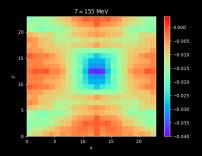

000 000 000 00 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	0000000000	00	

POLYAKOV LOOP - P(x,T,B)/P(x,T,0)

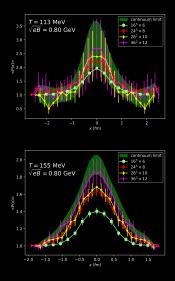
Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		


POLYAKOV LOOP - $P(x,T,B)/\overline{P(x,T,0)}$

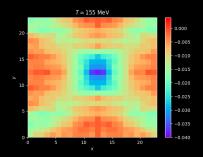
The Polyakov loop is typically broader than the chiral condensate.


Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

POLYAKOV LOOP - $P(x,T,B)/\overline{P(x,T,0)}$


The Polyakov loop is typically broader than the chiral condensate.

$$\left\langle \ ar{\psi}\psi(x)P(y) \ \right\rangle - \left\langle \ ar{\psi}\psi(x) \
ight
angle \left\langle \ P(x) \
ight
angle$$


Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

POLYAKOV LOOP - $P(x, \overline{T}, B)/P(x, \overline{T}, 0)$

The Polyakov loop is typically broader than the chiral condensate.

$$\left\langle \ \bar{\psi}\psi(x)P(y) \ \right\rangle - \left\langle \ \bar{\psi}\psi(x) \ \right\rangle \left\langle \ P(x) \ \right\rangle$$

The interaction of the condensate with *P* causes the dips!

Magnetic field on the lattice

Lattice simulations

Summary & Conclusions

References

ELECTRIC CURRENTS - $J^i = \sum_f \frac{q_f}{e} \bar{\psi}_f \gamma^i \psi_f$

Magnetic field on the lattice

Lattice simulations

Summary & Conclusions

References

ELECTRIC CURRENTS - $J^i = \sum_f \frac{q_f}{e} \bar{\psi}_f \gamma^i \psi_f$

$\mathbf{J}\sim \mathbf{ abla} imes \mathbf{B}$

Magnetic field on the lattice

Lattice simulations

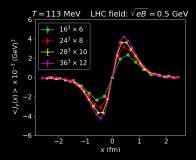
Summary & Conclusions

References

ELECTRIC CURRENTS - $J^i = \sum_f \frac{q_f}{e} \bar{\psi}_f \gamma^i \psi_f$

$$\mathbf{J} \sim \boldsymbol{\nabla} \times \mathbf{B} \quad \longrightarrow \quad J_y \sim \frac{\partial B_z}{\partial x}$$

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

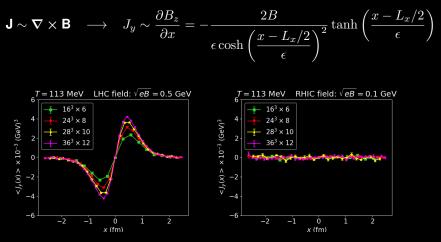

ELECTRIC CURRENTS - $J^i = \sum_f rac{q_f}{e} ar{\psi}_f \gamma^i \psi_f$

$$\mathbf{J} \sim \mathbf{\nabla} \times \mathbf{B} \quad \longrightarrow \quad J_y \sim \frac{\partial B_z}{\partial x} = -\frac{2B}{\epsilon \cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \tanh\left(\frac{x - L_x/2}{\epsilon}\right)$$

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	
		00000000000	

ELECTRIC CURRENTS - $J^i = \sum_f rac{q_f}{e} ar{\psi}_f \gamma^i \psi_f$

$$\mathbf{J} \sim \mathbf{\nabla} \times \mathbf{B} \quad \longrightarrow \quad J_y \sim \frac{\partial B_z}{\partial x} = -\frac{2B}{\epsilon \cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \tanh\left(\frac{x - L_x/2}{\epsilon}\right)$$



Strongly	magnetized	physical	systems

Agnetic field on the lattice

References

ELECTRIC CURRENTS - $J^i = \sum_f \frac{q_f}{e} \bar{\psi}_f \gamma^i \psi_f$

Figure 6: Lattice electric currents for LHC-like ($\sqrt{eB} = 0.5$ GeV) and RHIC-like ($\sqrt{eB} = 0.1$ GeV) magnetic fields, respectively.

Strongly	magnetized	physical	systems

Agnetic field on the lattice

Lattice simulations

Summary & Conclusions

References

(BARE) MAGNETIC SUSCEPTIBILITY

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

$$\frac{1}{\mu_0}\mathbf{B} = \mathbf{H} + \mathbf{M} \quad \longrightarrow \quad \mathbf{J}_{tot} = \mathbf{J}_f + \mathbf{J}_m \quad \longrightarrow \quad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

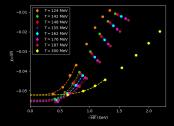
Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

$$\frac{1}{\mu_0} \mathbf{B} = \mathbf{H} + \mathbf{M} \quad \longrightarrow \quad \mathbf{J}_{tot} = \mathbf{J}_f + \mathbf{J}_m \quad \longrightarrow \quad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

- Linear response term: $\mathbf{M}\approx \chi_m \mathbf{H}$

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

$$\frac{1}{\mu_0}\mathbf{B} = \mathbf{H} + \mathbf{M} \quad \longrightarrow \quad \mathbf{J}_{tot} = \mathbf{J}_f + \mathbf{J}_m \quad \longrightarrow \quad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

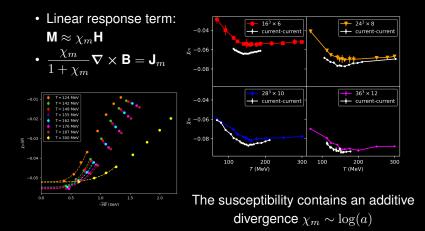

- Linear response term: $\mathbf{M} \approx \chi_m \mathbf{H}$
- $\frac{\chi_m}{1+\chi_m} \nabla \times \mathbf{B} = \mathbf{J}_m$

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		0000000000		

$$\frac{1}{\mu_0}\mathbf{B} = \mathbf{H} + \mathbf{M} \quad \longrightarrow \quad \mathbf{J}_{tot} = \mathbf{J}_f + \mathbf{J}_m \quad \longrightarrow \quad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

• Linear response term: $\mathbf{M} \approx \chi_m \mathbf{H}$

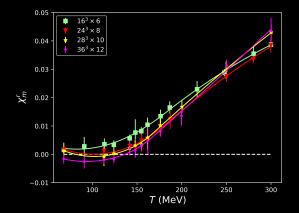
•
$$\frac{\chi m}{1+\chi_m} \nabla \times \mathbf{B} = \mathbf{J}_m$$


Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	0000000000	00	

$$\frac{1}{\mu_0} \mathbf{B} = \mathbf{H} + \mathbf{M} \quad \longrightarrow \quad \mathbf{J}_{tot} = \mathbf{J}_f + \mathbf{J}_m \quad \longrightarrow \quad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

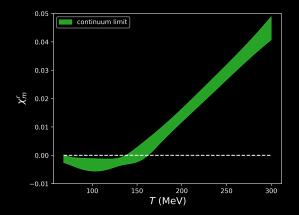
Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	0000000000	00	

$$\frac{1}{\mu_0} \mathbf{B} = \mathbf{H} + \mathbf{M} \quad \longrightarrow \quad \mathbf{J}_{tot} = \mathbf{J}_f + \mathbf{J}_m \quad \longrightarrow \quad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

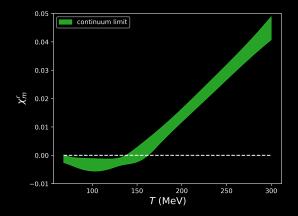

13

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
		000000000		

The divergence is independent of T: $\chi_m^r(T) \equiv \overline{\chi_m(T) - \chi_m(0)}$

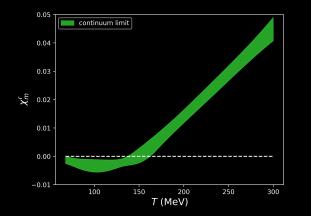

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

The divergence is independent of *T*: $\chi_m^r(T) \equiv \chi_m(T) - \chi_m(0)$


Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

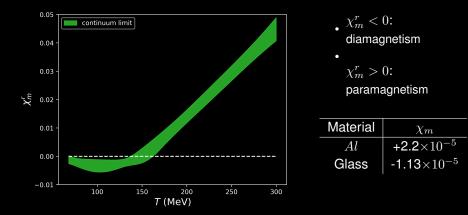
The divergence is independent of *T*: $\chi_m^r(T) \equiv \chi_m(T) - \chi_m(0)$

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	


The divergence is independent of *T*: $\chi_m^r(T) \equiv \chi_m(T) - \chi_m(0)$

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

The divergence is independent of *T*: $\chi_m^r(T) \equiv \chi_m(T) - \chi_m(0)$



 $\chi^r_m > 0$: paramagnetism

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

The divergence is independent of *T*: $\chi_m^r(T) \equiv \chi_m(T) - \chi_m(0)$

Great agreement with the current-current method! / Bali, Gergely Endrődi,

Summary & Conclusions

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
			00	

• A richer scenario emerges in the presence of an inhomogeneous *B* (dips, steady eletric currents, etc.);

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
			00	

- A richer scenario emerges in the presence of an inhomogeneous *B* (dips, steady eletric currents, etc.);
- Prominent electric currents for LHC-like magnetic fields and stronger;

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

- A richer scenario emerges in the presence of an inhomogeneous *B* (dips, steady eletric currents, etc.);
- Prominent electric currents for LHC-like magnetic fields and stronger;
- Using J_m and Maxwell's equations we introduced a new method to compute χ_m ;

000 00000000 00	Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
	000	000	000000000	00	

- A richer scenario emerges in the presence of an inhomogeneous *B* (dips, steady eletric currents, etc.);
- Prominent electric currents for LHC-like magnetic fields and stronger;
- Using J_m and Maxwell's equations we introduced a new method to compute χ_m ;
- Our χ_m corroborates the picture of weak diamagnetism in QCD for $T < T_c$ and strong paramagnetism for $T > T_c$;

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

- A richer scenario emerges in the presence of an inhomogeneous *B* (dips, steady eletric currents, etc.);
- Prominent electric currents for LHC-like magnetic fields and stronger;
- Using J_m and Maxwell's equations we introduced a new method to compute χ_m ;
- Our χ_m corroborates the picture of weak diamagnetism in QCD for $T < T_c$ and strong paramagnetism for $T > T_c$;
- The knowledge of these processes is important to capture the correct physics in heavy-ion collision studies (QCD models, hydrodynamics, etc.);

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References
000	000	000000000	00	

- A richer scenario emerges in the presence of an inhomogeneous *B* (dips, steady eletric currents, etc.);
- Prominent electric currents for LHC-like magnetic fields and stronger;
- Using J_m and Maxwell's equations we introduced a new method to compute χ_m ;
- Our χ_m corroborates the picture of weak diamagnetism in QCD for $T < T_c$ and strong paramagnetism for $T > T_c$;
- The knowledge of these processes is important to capture the correct physics in heavy-ion collision studies (QCD models, hydrodynamics, etc.);
- More on electromagnetic fields in lattice QCD: talk by Javier Hernandez today at 14:50!

Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References

BIBLIOGRAPHY I

References

- Deng, Wei-Tian and Xu-Guang Huang (2012). "Event-by-event generation of electromagnetic fields in heavy-ion collisions". In: *Physical Review C* 85.4, p. 044907.
- Cao, Gaoqing (2018). "Chiral symmetry breaking in a semilocalized magnetic field". In: *Physical Review D* 97.5, p. 054021.
- Endrődi, G et al. (2019). "Magnetic catalysis and inverse catalysis for heavy pions". In: *Journal of High Energy Physics* 2019.7, pp. 1–15.

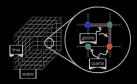
Strongly magnetized physical systems	Magnetic field on the lattice	Lattice simulations	Summary & Conclusions	References

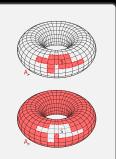
BIBLIOGRAPHY II

 Bali, Gunnar S, Gergely Endrődi, and Stefano Piemonte (2020).
 "Magnetic susceptibility of QCD matter and its decomposition from the lattice". In: *Journal of High Energy Physics* 2020.7, pp. 1–43.

B QUANTIZATION CONDITION

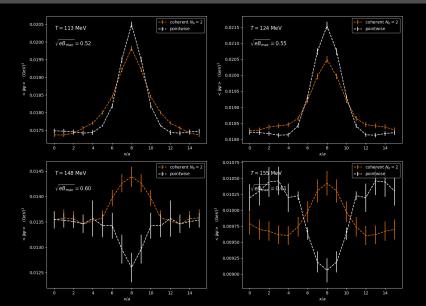
fermion fields $\longrightarrow \overline{\psi}, \psi$ gluon fields $\longrightarrow U_{\mu} = e^{iagA_{\mu}^{b}T_{b}} \in SU(3)$ magnetic field $\longrightarrow u_{\mu} = e^{iagA_{\mu}} \in U(1)$


$$\mathbf{B} = B\hat{z}$$

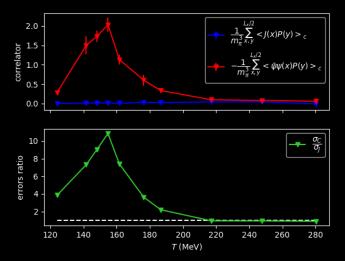

Stoke's theorem must hold on the torus.

inner area:
$$\oint A_{\mu}dx_{\mu} = SB$$

outer area: $\oint A_{\mu}dx_{\mu} = (L_xL_y - S)B$
 $e^{-iqBS} = e^{iqB(L_xL_y - S)}$


$$qB = \frac{2\pi N_b}{L_x L_y}, \quad N_b \in \mathbb{Z}$$

(anti-)periodic BC



INHOMOGENEOUS $ar{\psi}\psi(x)$ VS HOMOGENEOUS $ar{\psi}\psi(B(x))$

CORRELATIONS WITH P

$$\chi_m(B) = \chi_m(0) + \frac{c_2}{2!}B^2 + \frac{c_4}{4!}B^4 + \mathcal{O}(B^6)$$

To compute the non-linear dependence of χ_m on B

$$\mathbf{M}(\mathbf{r}) = \frac{1}{\mu_0} \int d^3 x' \chi_m(\mathbf{r}, \mathbf{r}', B) B(\mathbf{r}')$$