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Fluctuation data at chemical freeze-out

At RHIC STAR has measured the mean, variance, skewness and
kurtosis of the event-by-event net charge distribution at various
energies and centralities. [STAR: 1402.1558]

Other experiment also show interest, here (right) QM22
preliminary plot by NA61/SHINE. 6

M2
σ

10

210 Net-charge
Au+Au

| < 0.5η|

a)

σS

0

0.2

0.4

0.6 b)

(GeV)NNs√
5 6 10 20 30 100 200

2
σκ

-15
-10
-5
0
5

c)

0-5%
70-80%
0-5%     NBD
70-80% NBD
0-5%     Poisson
70-80% Poisson

FIG. 4: (Color online) Beam-energy dependence of (a) σ2/M ,
(b) Sσ, and (c) κσ2, after all corrections, for most central (0-
5%) and peripheral (70-80%) bins. The error bars are statis-
tical and the caps represent systematic errors. Results from
the Poisson and the NBD baselines are superimposed. The
values of κσ2 for Poisson baseline are always unity.

for Poisson baselines are always unity. For peripheral
collisions the κσ2 values show almost no variation as a
function of beam energy and lie above the Poisson base-
line and below the NBD baseline. For central collisions,
within the statistical and systematic errors of the data,
the κσ2 values at all energies are consistent with each
other, except for

√
sNN = 7.7 GeV. The weighted mean

of κσ2 calculated for central collisions at all energies is
2.4 ± 1.2. For central collisions, both of the baseline cal-
culations follow the data points except for the one at
the lowest energy. Deviations of the data points with re-
spect to the baseline calculations have been quantified in
terms of the significance of deviation, defined as, (|Data–

Baseline|)/(
√

err2stat + err2sys), where errstat and errsys are

the statistical and systematic errors, respectively. These
deviations remain within 2 in case of Sσ and κσ2 with
respect to the corresponding Poisson and NBD baselines.
This implies that the products of moments do not show
non-monotonic behaviour as a function of beam energy.

Fluctuations of conserved quantities are originally pro-
posed to locate the QCD critical point in high-energy
nuclear collisions [7–9]. However, these fluctuations can

also be used to extract the thermodynamic informa-
tion on chemical freeze-out by comparing experimentally
measured higher moments with those from first-principle
lattice QCD calculations [22]. Higher-order correlation
functions allow stricter tests on the thermal equilibrium
in heavy-ion collisions. Estimations of freeze-out pa-
rameters based on preliminary experimental data have
been obtained from these studies [40, 41]. Tradition-
ally, by using the integrated hadron yields, the first mo-
ment of the fluctuations, the chemical freeze-out can
be extracted from hadron resonance gas (HRG) mod-
els [24, 42]. From the latest lattice [43] and HRG analy-
ses [44] using the STAR net-charge and net-proton results
for central Au+Au collisions at 7.7 to 200 GeV, the ex-
tracted freeze-out temperatures range from 135 to 151
MeV and µB values range from 326 to 23 MeV. Note
that this is the first time that the experimentally mea-
sured higher moments are used to determine the chemi-
cal freeze-out conditions in high-energy nuclear collisions.
The freeze-out temperatures obtained from the higher
moments analysis are lower with respect to the tradi-
tional method [24, 45]. This difference could indicate a
higher sensitivity to freeze-out in the higher moments,
which warrants further investigation.

In summary, the first results of the moments of net-
charge multiplicity distributions for |η| < 0.5 as a func-
tion of centrality for Au+Au collisions at seven collision
energies from

√
sNN = 7.7 to 200 GeV are presented.

These data can be used to explore the nature of the
QCD phase transition and to locate the QCD critical
point. We observe that the σ2/M values increase mono-
tonically with increasing beam energy. Weak central-
ity dependence is observed for both Sσ and κσ2 at all
energies. The Sσ values increase with decreasing beam
energy, whereas κσ2 values are uniform except at the
lowest beam energy. Most of the data points show de-
viations from Poisson baselines. The NBD baselines are
closer to the data than Poisson, but do not quantita-
tively reproduce the data, implying the importance of
intra-event correlations of the multiplicities of positive
and negative particles in the data. Within the present
uncertainties, no non-monotonic behavior has been ob-
served in the products of moments as a function of colli-
sion energy. The measured moments of net-charge mul-
tiplicity distributions provide unique information about
the thermal conditions at freeze-out by directly compar-
ing with theoretical model calculations. Future measure-
ments with high statistics data will be needed for pre-
cise determination of freeze-out conditions and to make
definitive conclusions regarding the critical point.
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V. Koch, S. Mukherjee, K. Rajagopal, K. Redlich and M.
A. Stephanov for discussions related to this work. We
thank the RHIC Operations Group and RCF at BNL,
the NERSC Center at LBNL, the KISTI Center in Korea,



Fluctuations in a grand canonical ensemble

The expectation value of a conserved charge is a derivative with
respect to the chemical potential.

〈Nq〉 = T
∂ logZ (T ,V , {µq})

∂µq

The response of the system to the thermodynamic force µq is
proportional to the fluctuation of the conserved charge:

∂〈Ni 〉
∂µj

= T
∂2 logZ (T ,V , {µq})

∂µj∂µi
=

1

T
(〈NiNj〉 − 〈Ni 〉〈Nj〉)

The higher derivatives are the generalized quark number
susceptibilities:

χu,d ,s,c
i ,j ,k,l =

∂ i+j+k+l(p/T 4)

(∂µ̂u)i (∂µ̂d)j(∂µ̂s)k(∂µ̂c)l

with µ̂q = µq/T .



Translating from quark numbers to B,Q and S

In terms of physical derivatives
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Friendly observables

Let us compare the fluctuation results of two groups:

Baryon fluctuations Baryon-Strange correlator
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4stout results: [Wuppertal-Budapest [1507.04627,1910.14592]]



A not so friendly observable: χQ
2

The agreement is no longer so nice for the electric charge
fluctuations.

HISQ vs 4stout extrapolation Continuum extrapolation (HISQ/HotQCD)
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A closer look at χQ
2 (T = 145 MeV)

The Nr.1 source of errors:
ambiguities in the continuum extrapolation
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even in high statistics simulations. Which one should we believe?



A well known staggered artefact

Taste symmetry breaking: (a plot from 2014)
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Role of the gauge action

0 100 200 300 400 500
-4

-2

0

2

4

0 100 200 300 400 500
-4

-2

0

2

4

0 100 200 300 400 500
-4

-2

0

2

4

0 1000 2000 3000 4000 5000

Monte Carlo time

-4

-2

0

2

4

im
provem

ent
Topological charge history

Action of smooth instantons

DBW2

Symanzik

De Grand, Hasenfratz, Kovács PRD 67, 054501 (2003)

Taste breaking: smaller with horrible actions



The reason of ambiguous continuum scaling

Large discretization errors on the Pion-dominated χ2
Q(T ):

pions receive mass contamination (taste breaking)
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Thermodynamics with the 4HEX action

4 steps of HEX smearing + DBW2 gauge action to drastically
reduce the taste breaking effect

Physical point defined by mπ/fπ = 1.0337, ms/mlight = 27.63

mq tuning and fπ-based scale determination in the a range:
0.22 . . . 0.072 fm

Thermodynamics runs
6 Temperatures 135 . . . 160 MeV
4 lattice spacings 323 × 8, 403 × 10, 483 × 12, 643 × 16
Statistics: cca 10000 configurations / ensemble
Nt = 16: half statistics so far: → results are PRELIMINARY

Results are less than a month old . . .

A full systematic analysis is yet to be made
→ results are PRELIMINARY



Up-down correlator: the strength of the sign problem

The complex phase of the fermion determinant ∼ the light quark density.

[(See formula 5.2 of Allton et al hep-lat/0501030)]

detM = | detM|e iθ θ =
1

4
Nf Im


µ

∂ln detM

∂µ︸ ︷︷ ︸
light quark density

+ . . .




〈
θ2
〉

= −1

9
µ2BL

3TN2
f χ
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Result for χQ
2

The 4HEX extrapolation is remarkably linear!

Continuum extrapolation T = 145 MeV Continuum results for all T
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Is the deviation from ideal HRG a volume effect?



Result for χQ
2

For the volume effects: We rerun the simulations on smaller volumes:

303 × 10, 363 × 12 and 483 × 16

Continuum extrapolation T = 145 MeV Continuum results for all T
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The deviation from ideal HRG is not likely to be a volume effect.



Higher order electric charge correlator
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Hadron Resonance Gas model was calculated with a split pion spectrum,

as we observed in T = 0 lattice simulations with the respective action.



Higher order electric charge fluctuations

Candidate for chemical freeze-out thermometer:

χQ
4

χQ
2

= κσ2
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Higher order electric charge fluctuations

Candidate for chemical freeze-out thermometer:
χQ
4

χQ
2

= κσ2
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Summary

First thermodynamics results with the new 4HEX staggered
action was presented.

Continuum extrapolation using Nt = 8, 10, 12, 16 was linear in
most cases.

Finite volume effects found to be negligible, shown for
χ2
Q(T = 145 MeV)

With the precision of the continuum results we see significant
deviations from ideal hadron resonance gas prediciton.
Improvements can be benchmarked against simulation results.

Thank you!



Backup slides



4HEX runs at zero temperature

Lattice spacing range: 0.22 .. 0.072 fm
Here: the finest lattice (0.072 fm)

Quark mass tuning
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Comparison to models: precision needed

Below Tpc QCD is expected to show features of a hadron gas.

Partial wave analysis
in the S-matrix formalism
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More continuum scalings 4HEX vs HISQ

Left: 4HEX (this work), Right HISQ scaling [hotQCD [2107.10011]]
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Fluctuations on the lattice

The partition function of the lattice gauge theory with staggered
fermions is

Z =

∫
DU e−Sg (detMu(µu))1/4(detMd(µd))1/4(detMs(µs))1/4 =

∫
DU e−Seff

where Sg is the gauge action. First derivative of the free energy density:

∂i logZ =
1

Z

∫
DU ∂ie

−Seff = 〈Ai 〉 , Ai =
1

4

d log detMi (µi )

dµi
=

1

4
TrM ′M−1

When we make further derivatives, the following chain rule applies:

∂j 〈X 〉 = −〈X 〉 (∂j logZ ) +
〈
X∂je

−Seff
〉

+ 〈∂jX 〉
= 〈XAj〉 − 〈X 〉 〈Aj〉+ 〈∂jX 〉 .

With these rules the 2nd derivative reads

∂i∂j logZ = 〈AiAj〉 − 〈Ai 〉 〈Aj〉+ δij 〈dAi/dµ〉
Isospin and baryon directions:

(∂u − ∂d)2 logZ = 2 〈dA/dµ〉 ,
(∂u + ∂d)2 logZ = 4[〈AA〉 − 〈A〉 〈A〉] + 2 〈dA/dµ〉


