

Phase structure and critical point in heavy-quark QCD at finite temperature

Kazuyuki Kanaya¹⁾ with Ryo Ashikawa²⁾, Shinji Ejiri³⁾, Masakiyo Kitazawa^{2,4)}, Hiroshi Suzuki⁵⁾, Naoki Wakabayashi³⁾ (WHOT-QCD Collaboration)

1) Univ. Tsukuba, 2) Osaka Univ., 3) Niigata Univ., 4) Kyoto Univ., 5) Kyushu Univ.

Nature of T > 0 QCD transition as function of m_q 's

The traditional picture given by this Columbia plot

Nature of T > 0 QCD transition as function of m_q 's

The traditional picture given by this Columbia plot is still under many discussions...

Nature of T > 0 QCD transition as function of m_q 's

The traditional picture given by this Columbia plot is still under many discussions...

- Recent studies on the location of CP in heavy-quark QCD
- Saito+ (WQHOT-QCD), PRD (2011/2014): HPE LO, Nt=4, Ns/Nt=6
- Cuteri+, PRD (2021): Nf=2, fullQCD, Nt=6,8,10, Ns/Nt=4-7(10)

=> We still have strong cutoff & spatial volume dependences.

Motivations

These make the analyses slightly ambiguous & call careful systematic error estimations.

Motivations

These make the analyses slightly ambiguous & call careful systematic error estimations.

Simulations with larger spatial volumes & high statistics
 to identify the FSS more clearly.
 Multi-point reweighting to vary coupling parameters continuously.

This talk is based on

- Siyohara+ (WQHOT-QCD), *Phys.Rrev.D* (2021) [DOI: 10.1103/PhysRevD.104.114509]
- Wakabayashi+ (WHOT-QCD), *Prog.Theor.Exp.Phys.* (2022) [DOI: 10.1093/ptep/ptac019]
- Selection Ashikawa+ (WHOT-QCD), ongoing

We first revisit the Nt=4 case to increase the spatial volume [Kiyohara+, PRD ('21)].

Lattice setup

 Action: plaquette gauge + standard Wilson quarks
 Kernel for each flavor: M_{xy}(κ) = δ_{xy} - κ ∑_µ [(1 - γ_µ)U_{x,µ}δ<sub>y,x+µ̂ + (1 + γ_µ)U[†]_{y,µ}δ_{y,x-µ̂]} = δ_{xy} - κB_{xy} hopping term κ = 1/(2am_q + 8)
 Quark contribution to the effective action: ln det M(κ) = -1/(N_{site}n) ∑_{n=1}[∞] Tr[Bⁿ]κⁿ
 closed loops of B with κ [loop length]
</sub>

Hopping Parameter Expansion to reduce simulation cost for large spatial volumes

- HPE ≈ $1/(am_q)$ expansion
- HPE worsens with a → 0 (N_t → ∞) => higher order terms required with N_t → ∞.

Simulation incorporating LO + NLO meas.'s

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (2021)

LO incorporated in the configuration generation

$$\beta \rightarrow \beta^* = \beta + 48 N_f \kappa^4$$

 $\lambda \sum_{\mathbf{x}} \Omega(\mathbf{x})$ term in the effective action ($\lambda = 48N_f N_t \kappa^4$ for Nt=4) **x** can be incorporated in PHB+OR parallel simulation efficiently by keeping all temporal sites within a node

NLO incorporated in the measurements through multi-point reweighting

$$\langle \hat{O}(U) \rangle_{\beta,\lambda}^{\text{NLO}} = \frac{\langle \hat{O}(U) e^{-\delta S_{\text{LO}} - S_{\text{NLO}}(\beta,\lambda)} \rangle_{\tilde{\beta},\tilde{\lambda}}^{\text{LO}}}{\langle e^{-\delta S_{g+\text{LO}} - S_{\text{NLO}}(\beta,\lambda)} \rangle_{\tilde{\beta},\tilde{\lambda}}^{\text{LO}}}$$

$$\delta S_{g+\text{LO}} = S_{g+\text{LO}}(\beta, \lambda) - S_{g+\text{LO}}(\tilde{\beta}, \tilde{\lambda})$$

- Simulations at several $(\tilde{\beta}^*, \tilde{\lambda}) =>$ measure at (β^*, λ)
- Overlap problem resolved by the inclusion of LO in configuration generations <= essential on spatially large lattices in this study

Study on $N_t = 4$ lattices

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (2021)

Simulations: Nt=4, Ns/Nt = LT = 6, 8, 9, 10, 12, each 3-6 x $[(\tilde{\beta}^*, \tilde{\lambda})]$ with ~10⁶ meas.] around the transition line L = spatial lattice size, $\lambda = 48N_fN_t\kappa^4$ for Nt=4

Distribution of Ω_R on the transition line

Study on $N_t = 4$ lattices

Precision much improved over previous studies

 \therefore Ns/Nt = LT \ge 9 required for Z(2) FSS

 $\Rightarrow B_4^{\Omega} = 1.630(24)(2)$ using Ns/Nt \geq 9, consistent with Z(2) value 1.604 within $\approx 1\sigma$

$$\approx \lambda_c = 0.00503(14)(2) [\kappa_c = 0.0603(4)]$$
 for Nt=4, Nf=2

(cf.) Ejiri+ PRD(2020): $\kappa_c = 0.0640(10)$ with eff. NLO

Study on $N_t = 4$ lattices

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (2021)

Comparison with LO analysis => effects of NLO corrections

 \bigstar LO \approx NLO with Ns/Nt=LT \geq 9

 \Rightarrow Shift due to NLO is small ($\approx 2.6\%$), suggesting LO dominance around κ_c for Nt=4

=> previous Nt=4 LO results seems OK

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

Are the effects of further higher orders of HPE really negligible?

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

Are the effects of further higher orders of HPE really negligible?

We developed a method to separately evaluate W(n) and $L_m(N_t, n)$ from D_n by combing the results with various twisted boundary conditions.

- $\hat{W}_{i}, \hat{P}_{j} \text{ in } W(n) \text{ and } L_{m}(N_{t}, n) \text{ take their maximum value 1 when we set } U_{x,\mu} = 1$ In this case, we can calculate W(n) and $L_{m}(N_{t}, n)$ analytically up to high orders.
 - => Worst convergent case of HPE can be studied by combining them.

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

Ŵ_i, Ŷ_j in W(n) and L_m(N_t, n) take their maximum value 1 when we set U_{x,µ} = 1
 In this case, we can calculate W(n) and L_m(N_t, n) analytically up to high orders.
 => Worst convergent case of HPE can be studied by combining them.

Convergence radius $\longrightarrow_{n \to \infty} 1/8$, i.e. convergent up to the chiral lim <= free Wilson quarks when $U_{x,\mu} = 1$

=> HPE reliable up to the chiral limit when sufficiently high orders are taken.

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

To which order we need to incorporate? <= depends on the value of κ

Deviation due to truncation (in the worst convergent case):

 \checkmark For Nt=4: $\kappa_c = 0.0603(4)$ [Kiyohara+ ('21)]

=> LO may have at worst $\approx 10\%$ error, NLO good enough

For Nt=6: $\kappa_c = 0.0877(9)$ [Cuteri+ ('22)], 0.1286(40) [Ejiri+ ('20) using eff. pot.] => NLO is \geq 93% accurate. remaining error can be removed by NNLO or higher

 $rac{k}{k}$ For Nt=8: $\kappa_c = 0.1135(8)$ [Cuteri+ ('22)] => NNLO needed for ≥95% accuracy

Effective method to incorporate high orders

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

Calcuration of high order term becomes quickly difficult with increasing n.

We extend the idea of the effective NLO method [Ejiri+ ('20)] to high orders.

Basic observation: strong correlation of Wilson/Polyakov-type loops among different n.

Distribution of $L(N_t, n)$ vs. the Polyakov loop Ω

Effective method to incorporate high orders

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

$\approx L(N,n) \approx L^0(N,n) c_n \operatorname{Re}\hat{\Omega}$				$N_t = 6$		$N_t = 8$
			c_6	1 0.8112(20)(7)		
			c_8			1
			c_{10}	0.6280(15)	(3)	0.8327(114)(95)
known from U _{xµ} =1			c_{12}	0.4736(29)(15) 0.3609(26)(11)		0.6408(36)(27)
			c_{14}			0.4841(22)(10)
	our MC result	S:	<i>c</i> ₁₆	0.3106(25)	(10)	0.3616(21)(6)
			c_{18}	1.0159(90)	(33)	0.2679(16)(3)
			c_{20}	-0.02771(57))(13)	0.2020(13)(2)
$\checkmark W(n) \sim W^0(n) (d \hat{P} + f)$		<i>n</i>	$d_n(N_t = 6)$	$f_n(N_t = 6)$	$d_n(N_t = 8)$	$f_n(N_t = 8)$
\bowtie $W(n) \approx W(n)$	$(a_n I + J_n)$	4	1	0	1	0
0.15		6	1.3625(73)(12)	-0.4070(42)(7)	1.3366(66)(8)	-0.3922(39)(5)
n=10			1.4644(123)(11)	-0.6089(72)(6)	1.4256(96)(8)	-0.5869(57)(5)
0.148		10	1.3835(156)(10)	-0.6590(91)(6)	1.3433(117)(8)	-0.6367(70)(5)
0.146 0.144 0.142 0.142 0.14 0.142 0.14 0.778 0.58 0.582 0.584		12	1.2140(178)(9)	-0.6235(103)(5)	1.1752(130)(7)	-0.6025(78)(4)
		14	1.0256(196)(9)	-0.5533(114)(5)	0.9825(141)(7)	-0.5303(85)(4) 0.4512(02)(5)
	though the correlation	10	0.800/(219)(9) 0.7491(259)(10)	-0.4811(127)(5) 0.4206(150)(6)	0.8052(155)(8) 0.6608(173)(0)	-0.4312(92)(3) 0.2870(102)(5)
	weaker than L(Nt,n)	20	0.7290(337)(12)	-0.4275(196)(7)	0.6071(219)(12	-0.3606(103)(3) - 0.3606(131)(7)
P						

This linear correlation suggests us to approximate

=> Higher order effects can be effectively incorporated in the LO simulation by

$$\beta \rightarrow \beta^* = \beta + \frac{1}{6} N_f \sum_{n=4}^{n_{\text{max}}} W^0(n) d_n \kappa^n \qquad \lambda \rightarrow \lambda^* = N_f N_t \sum_{n=N_t}^{n_{\text{max}}} L^0(N_t, n) c_n \kappa^n$$

Extension to non-degenerate cases (Nf=2+1 etc.) straightforward.

Study on $N_t = 6$ lattices

Ashikawa+ (WHOT-QCD), ongoing

- Nt=6, Ns/Nt = LT = 6, (7,) 8, 9, 10, 12, (15) ongoing
- Status of B_4^{Ω} with NLO: $\lambda = 128 N_f N_t \kappa^6$ for Nt=6, Nf=2, NLO

Preliminary:

 $\begin{array}{ll} \bigstar & B_4^{\Omega} \sim 1.63 - 1.64 \hspace{0.1cm} \text{with Ns/Nt} \geq 9 \hspace{0.1cm} (\text{cf.}) \hspace{0.1cm} Z(2) \hspace{0.1cm} \text{value} = 1.604 \\ & \bigstar & \lambda_c \sim 0.00101 \hspace{0.1cm} \text{=>} \hspace{0.1cm} \kappa_c \sim 0.093 \hspace{0.1cm} \text{NLO} \hspace{0.1cm} \text{=>} \hspace{0.1cm} \kappa_c \sim 0.0905 \hspace{0.1cm} \text{eff. including up to 20th order} \\ & \hspace{0.1cm} \text{looks consistent with} \hspace{0.1cm} \kappa_c = 0.0877(9) \hspace{0.1cm} \text{by a full QCD simulation [Cuteri+ ('22)]} \end{array}$

Conclusion & outlook

- HPE provides us with a reliable and powerful way to study QCD with heavy quarks
 - Convergent up to chiral limit + enable large Ns/Nt simul.'s + analytic in Nf
 - \checkmark up to κ_c of Nt=4, Nf=2 : LO: \geq 90% / NLO: \geq 99% accurate
 - i around κ_c of Nt=6, Nf=2 : NLO: ≥93% accurate

Higher orders needed to remove remaining truncation error and for $Nt \ge 8$.

- ★ At Nt=4, Ns/Nt≥9 needed for Z(2) FSS => NLO study of B₄ Ω : $\kappa_c = 0.0603(4)$ for Nf=2
- ★ At Nt=6 with Ns/Nt≥9, $\kappa_c \sim 0.090$ including high orders (preliminary) looks consistent with a full QCD study [Cuteri+ ('22)]
- At Nt=6, more statistics & larger Ns/Nt : ongoing
- Continuum extrapolation => large Nt => high orders must be taken.
- We developed an effective method to incorporate high orders
 => easy to implement in LO PHB simulations
 => used in Nt=6 study
- HPE powerful also at **finite densities** : in progress (cf.) Chabane on Monday

We miss our best friend+collaborator

Yusuke Taniguchi

who passed away silently on July 22, 2022.

. .

.

. .

.

. . .

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (2021)

$$V(\Omega_{\mathrm{R}};\lambda,LT) = -\ln p(\Omega_{\mathrm{R}})_{\lambda,LT},$$

$$\Delta \Omega = \Omega^{(2)} - \Omega^{(1)}. \tag{46}$$

According to Eq. (15), this quantity should behave around the *CP* as

$$\Delta\Omega(\lambda, LT) = (LT)^{y_h - 3} \Delta \tilde{\Omega}((\lambda - \lambda_c)(LT)^{1/\nu}), \qquad (47)$$

FIG. 13. Positions of peaks of the distribution function $p(\Omega_R)$ measured on the transition line.

$W^{0}(4)$	288	$W^{0}(20)$	$1.54422361 \times 10^{14}$	$W^{0}(36)$	$-5.58410362 \times 10^{27}$
$W^{0}(6)$	8448	$W^{0}(22)$	$2.83682900 \times 10^{15}$	$W^{0}(38)$	$-2.91018925 \times 10^{29}$
$W^{0}(8)$	245952	$W^{0}(24)$	$-2.40028584 \times 10^{16}$	$W^{0}(40)$	$-1.50223497 \times 10^{31}$
$W^{0}(10)$	7372800	$W^{0}(26)$	$-6.88836562 \times 10^{18}$	$W^{0}(42)$	$-7.71380102 \times 10^{32}$
$W^{0}(12)$	225232896	$W^{0}(28)$	$-5.41133954 \times 10^{20}$	$W^{0}(44)$	$-3.95168998 \times 10^{34}$
$W^{0}(14)$	6906175488	$W^{0}(30)$	$-3.39122203 \times 10^{22}$	$W^{0}(46)$	$-2.02386871 \times 10^{36}$
$W^{0}(16)$	208431502848	$W^{0}(32)$	$-1.93668514 \times 10^{24}$	$W^{0}(48)$	$-1.03783044 \times 10^{38}$
$W^{0}(18)$	$6.00259179 \times 10^{12}$	$W^{0}(34)$	$-1.05424635 \times 10^{26}$	$W^{0}(50)$	$-5.33468075 \times 10^{39}$
$L_1^0(4, 4)$	48	$L_1^0(10, 10)$	1228.8	$L_1^0(18, 18)$	174762.67
$L_1^{\hat{0}}(4, 6)$	1728	$L_1^{\hat{0}}(10, 12)$	331776	$L_1^{\hat{0}}(18, 20)$	160432128
$L_1^{\hat{0}}(4,8)$	45792	$L_1^{\hat{0}}(10, 14)$	52862976	$L_1^{\hat{0}}(18, 22)$	75497472000
$L_1^{0}(4, 10)$	645120	$L_1^{\hat{0}}(10, 16)$	6258180096	$L_1^{\hat{0}}(18, 24)$	2.36626×10^{13}
$L_1^{\hat{0}}(4, 12)$	-26224128	$L_1^{\hat{0}}(10, 18)$	5.99330×10^{11}	$L_1^{\hat{0}}(18, 26)$	5.50232×10^{15}
$L_1^{\hat{0}}(4, 14)$	-3201067008	$L_1^{\hat{0}}(10, 20)$	4.87727×10^{13}	$L_1^{\hat{0}}(18, 28)$	1.01809×10^{18}
$L_1^{\hat{0}}(4, 16)$	-2.14087×10^{11}	$L_1^{\hat{0}}(10, 22)$	3.47446×10^{15}	$L_1^{\hat{0}}(18, 30)$	1.57315×10^{20}
$L_1^{\hat{0}}(4, 18)$	-1.19007×10^{13}	$L_1^{\hat{0}}(10, 24)$	2.20156×10^{17}	$L_1^{\hat{0}}(20, 20)$	629145.6
$L_1^{\hat{0}}(4, 20)$	-6.00757×10^{14}	$L_1^{\hat{0}}(10, 26)$	1.24531×10^{19}	$L_1^{\hat{0}}(20, 22)$	717225984
$L_1^{\hat{0}}(4, 22)$	-2.84486×10^{16}	$L_1^{\hat{0}}(10, 28)$	6.20798×10^{20}	$L_1^{\hat{0}}(20, 24)$	4.11140×10^{11}
$L_1^{\hat{0}}(4, 24)$	-1.28105×10^{18}	$L_1^{\hat{0}}(10, 30)$	2.59861×10^{22}	$L_1^{\hat{0}}(20, 26)$	1.54445×10^{14}
$L_1^{\dot{0}}(4, 26)$	-5.50874×10^{19}	$L_1^{\hat{0}}(12, 12)$	4096	$L_1^{\hat{0}}(20, 28)$	4.24543×10^{16}
$L_1^{\hat{0}}(4, 28)$	-2.25576×10^{21}	$L_1^{\hat{0}}(12, 14)$	1622016	$L_1^{\hat{0}}(20, 30)$	9.17892×10^{18}
$L_1^{0}(4, 30)$	-8.69402×10^{22}	$L_1^{\hat{0}}(12, 16)$	360603648	$L_1^{\hat{0}}(22, 22)$	2287802.18
$\hat{L_1^0}(6, 6)$	128	$L_1^{\hat{0}}(12, 18)$	57416810496	$L_1^{\hat{0}}(22, 24)$	3170893824
$L_1^{\hat{0}}(6,8)$	11520	$L_1^{\hat{0}}(12, 20)$	7.19497×10^{12}	$L_1^{\hat{0}}(22, 26)$	2.17478×10^{12}
$L_1^{0}(6, 10)$	716544	$L_1^{\hat{0}}(12, 22)$	7.51820×10^{14}	$L_1^{\hat{0}}(22, 28)$	9.64167×10^{14}
$L_1^{\hat{0}}(6, 12)$	35891712	$L_1^{(12, 24)}$	6.80443×10^{16}	$L_1^{0}(22, 30)$	3.09123×10^{17}
$L_1^{\hat{0}}(6, 14)$	1464910848	$L_1^{\hat{0}}(12, 26)$	5.46987×10^{18}	$L_1^{\hat{0}}(24, 24)$	8388608
$L_1^{0}(6, 16)$	43817011200	$L_1^{\hat{0}}(12, 28)$	3.96931×10^{20}	$L_1^{\bar{0}}(24, 26)$	13891534848
$L_1^{0}(6, 18)$	3.17933×10^{11}	$L_1^{\bar{0}}(12, 30)$	2.62442×10^{22}	$L_1^0(24, 28)$	1.12307×10^{13}
	0 = 1 = 1 = 13	70/14 14	1 40 42 42		5 00075 1015

Fig. 11. Effective critical point $\kappa_{c, eff}$ in two-flavor QCD for $N_t = 6$ as a function of n_{max} . The black circle and red square symbols are for $\kappa_{c, LO}$ obtained on a $24^3 \times 6$ and a $32^3 \times 6$ lattice, respectively.

Fig. 14. Upper bound of μ/T such that higher-*m* terms are small, as given in Eq. (71).

$$\frac{\mu}{T} < \ln \left| \frac{L_m^0(N_t, n)}{L_{m+1}^0(N_t, n)} \right|$$