Phase structure and critical point in heavy-quark QCD at finite temperature

Kazuyuki Kanaya ${ }^{1)}$ with Ryo Ashikawa²), Shinji Ejiri ${ }^{3}$),
 (WHOT-QCD Collaboration)

\author{

1) Univ. Tsukuba, 2) Osaka Univ., 3) Niigata Univ., 4) Kyoto Univ., 5) Kyushu Univ.
}

Nature of $T>0$ QCD transition as function of $\boldsymbol{m}_{q} \mathbf{s}$

The traditional picture given by this Columbia plot

Nature of $T>0$ QCD transition as function of $\boldsymbol{m}_{q}{ }^{\prime} s$

The traditional picture given by this Columbia plot is still under many discussions...

Nature of $\boldsymbol{T}>\mathbf{0}$ QCD transition as function of $\boldsymbol{m}_{\mathbf{q}} \mathbf{s}$

The traditional picture given by this Columbia plot is still under many discussions...

8 Recent studies on the location of CP in heavy-quark QCD

- Saito+ (WQHOT-QCD), PRD (201 I/2014): HPE LO, $\mathrm{Nt}=4, \mathrm{Ns} / \mathrm{Nt}=6$
(2) Ejiri+ (WHOT-QCD), PRD (2020): HPE eff-NLO, $\mathrm{Nt}=6, \mathrm{Ns} / \mathrm{Nt}=4-6 ; \mathrm{Nt}=8, \mathrm{Ns} / \mathrm{Nt}=3$
(9. Cuteri+, PRD (202I): Nf=2, fullQCD, $\mathrm{Nt}=6,8,10, \mathrm{Ns} / \mathrm{Nt}=4-7(10)$
=> We still have strong cutoff \& spatial volume dependences.

Motivations

B Binder cumulant analysis based on the $Z(2)$ FSS expected around $C P$

So far, however, identification of the $Z(2)$ FSS is not a simple task --- removal of many high-T data required / correction terms to the FSS introduced.

These make the analyses slightly ambiguous \& call careful systematic error estimations.

Motivations

B Binder cumulant analysis based on the $Z(2)$ FSS expected around $C P$ So far, however, identification of the $Z(2)$ FSS is not a simple task --- removal of many high-T data required / correction terms to the FSS introduced.

These make the analyses slightly ambiguous \& call careful systematic error estimations.

=> Simulations with larger spatial volumes \& high statistics to identify the FSS more clearly.
 => Multi-point reweighting to vary coupling parameters continuously.

This talk is based on
© Kiyohara+ (WQHOT-QCD), Phys.Rrev.D (202I) [DOI:IO.II03/PhysRevD.I04.II4509]

- Wakabayashi+ (WHOT-QCD), Prog.Theor.Exp.Phys. (2022) [DOI: I0.I093/ptep/ptac019]
- Ashikawa+ (WHOT-QCD), ongoing

We first revisit the $\mathrm{Nt}=4$ case to increase the spatial volume [Kiyohara+, PRD ('2I)].

Lattice setup

* Action: plaquette gauge + standard Wilson quarks

V Kernel for each flavor: $M_{x y}(\kappa)=\delta_{x y}-\kappa \sum_{\mu}\left[\left(1-\gamma_{\mu}\right) U_{x, \mu} \delta_{y, x+\hat{\mu}}+\left(1+\gamma_{\mu}\right) U_{y, \mu}^{\dagger} \delta_{y, x-\hat{\mu}}\right]$

$$
=\delta_{x y}-\kappa B_{x y}
$$

hopping term

$$
\kappa=\frac{1}{2 a m_{q}+8}
$$

- Quark contribution to the effective action: $\ln \operatorname{det} M(\kappa)=-\frac{1}{N_{\text {site }} n} \sum_{n=1}^{\infty} \operatorname{Tr}\left[B^{n}\right] \kappa^{n}$
- closed loops of B with $\kappa^{\text {[loop length] }}$

Hopping Parameter Expansion to reduce simulation cost for large spatial volumes

- $\mathrm{HPE} \approx 1 /\left(a m_{q}\right)$ expansion
(9) HPE worsens with $a \rightarrow 0\left(N_{t} \rightarrow \infty\right) \quad$ => higher order terms required with $N_{t} \rightarrow \infty$.

Simulation incorporating LO + NLO meas.'s

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (202I)
(1) LO incorporated in the configuration generation
\square $\beta \rightarrow \beta^{*}=\beta+48 N_{f} \kappa^{4}$

$\lambda \sum \Omega(\mathbf{x})$ term in the effective action $\quad\left(\lambda=48 N_{f} N_{t} \kappa^{4}\right.$ for $\left.\mathrm{Nt}=4\right)$ can be incorporated in $\mathrm{PHB}+\mathrm{OR}$ parallel simulation efficiently by keeping all temporal sites within a node
(NLO incorporated in the measurements through multi-point reweighting

$$
\langle\hat{O}(U)\rangle_{\beta, \lambda}^{\mathrm{NLO}}=\frac{\left\langle\hat{O}(U) e^{-\delta S_{\mathrm{LO}}-S_{\mathrm{NLO}}(\beta, \lambda)}\right\rangle_{\tilde{\tilde{\beta}}, \tilde{\lambda}}^{\mathrm{LO}}}{\left\langle e^{-\delta S_{g+\mathrm{LO}}-S_{\mathrm{NLO}}(\beta, \lambda)}\right\rangle_{\tilde{\tilde{R}}, \tilde{\lambda}}^{\mathrm{L}}}
$$

Q Simulations at several $\left(\tilde{\beta}^{*}, \tilde{\lambda}\right)=>$ measure at $\left(\beta^{*}, \lambda\right)$
Q Overlap problem resolved by the inclusion of LO in configuration generations <= essential on spatially large lattices in this study
$\delta S_{g+\mathrm{LO}}=S_{g+\mathrm{LO}}(\beta, \lambda)-S_{g+\mathrm{LO}}(\tilde{\beta}, \tilde{\lambda})$

Study on $\mathbf{N}_{\mathbf{t}}=4$ lattices

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD i04 (202I)

- Simulations: $\mathrm{Nt}=4, \mathrm{Ns} / \mathrm{Nt}=\mathrm{LT}=6,8,9,10,12$, each $3-6 \times\left[\left(\tilde{\beta}^{*}, \tilde{\lambda}\right)\right.$ with $\sim 10^{6}$ meas. $]$ around the transition line $\quad \mathrm{L}=$ spatial lattice size, $\lambda=48 N_{f} N_{t} \kappa^{4}$ for $\mathrm{Nt}=4$

B History of $\Omega_{\mathrm{R}}=\operatorname{Re} \Omega \quad 40^{3} \times 4$

- Distribution of Ω_{R} on the transition line

\Rightarrow Binder cumulant $B_{4}^{\Omega}=\frac{\left\langle\Omega_{R}^{4}\right\rangle_{c}}{\left\langle\Omega_{R}^{2}\right\rangle_{c}^{2}}+3$ along the transition line

Study on $\mathbf{N}_{\mathbf{t}}=4$ lattices

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (202I)

* Results at $\mathrm{Nt}=4$ with HPE up to NLO

§ Precision much improved over previous studies
$\approx \mathrm{Ns} / \mathrm{Nt}=\mathrm{LT} \geq 9$ required for $\mathrm{Z}(2)$ FSS
iz $B_{4}^{\Omega}=1.630(24)(2)$ using $\mathrm{Ns} / \mathrm{Nt} \geq 9$, consistent with $\mathrm{Z}(2)$ value I .604 within $\approx 1 \sigma$
$\approx \lambda_{c}=0.00503(14)(2)\left[\kappa_{c}=0.0603(4)\right]$ for $\mathrm{Nt}=4, \mathrm{Nf}=2$
(cf.) Ejiri+ PRD(2020): $\kappa_{c}=0.0640(10)$ with eff. NLO

Study on $\mathbf{N}_{\mathbf{t}}=4$ lattices

- Comparison with LO analysis

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD i04 (202I)
=> effects of NLO corrections

$\mathrm{LO} \approx \mathrm{NLO}$ with $\mathrm{Ns} / \mathrm{Nt}=\mathrm{LT} \geq 9$
Shift due to NLO is small ($\approx 2.6 \%$), suggesting LO dominance around κ_{c} for $\mathrm{Nt}=4$ => previous $\mathrm{Nt}=4$ LO results seems OK

Scope and convergence of HPE

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)
Are the effects of further higher orders of HPE really negligible?

Scope and convergence of HPE

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)
Are the effects of further higher orders of HPE really negligible?
() Quark contribution to the effective action:

loops of length n

$$
\begin{array}{ll}
\ln \operatorname{det} M(\kappa)=N_{\text {site }} \sum_{n} D_{n} \kappa^{n}, & D_{n}=\frac{-1}{N_{\text {site }} n} \operatorname{Tr}\left[B^{n}\right] \approx \frac{-1}{N_{\text {site }} n}\left\langle\left\langle\eta^{\dagger} B^{n} \eta\right\rangle\right\rangle_{\text {noises }} \\
B_{x y}=\sum_{\mu}\left[\left(1-\gamma_{\mu}\right) U_{x, \mu} \delta_{y, x+\hat{\mu}}+\left(1+\gamma_{\mu}\right) U_{y, \mu}^{\dagger} \delta_{y, x-\hat{\mu}}\right] \\
\text { Wilson-type loops } & W(4)=96 N_{c} \hat{P}, \quad W(6)=256 N_{c}\left(3 \hat{W}_{\text {rec }}+6 \hat{W}_{\text {chair }}+2 \hat{W}_{\text {crown }}\right) \\
\begin{array}{l}
\text { D } n=W(n)+\sum_{m} L_{m}\left(N_{t}, n\right)=W(n)+L\left(N_{t}, n\right) \\
\begin{array}{l}
\text { Polyakov-type loops } \\
\text { with m-windings }
\end{array} \\
\\
L_{1}\left(N_{t}, N_{t}\right)=\frac{4 N_{c} 2^{N_{t}}}{N_{t}} \operatorname{Re} \hat{\Omega}
\end{array}
\end{array}
$$

We developed a method to separately evaluate $W(n)$ and $L_{m}\left(N_{t}, n\right)$ from D_{n} by combing the results with various twisted boundary conditions.

Scope and convergence of HPE

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

- \hat{W}_{i}, \hat{P}_{j} in $W(n)$ and $L_{m}\left(N_{t}, n\right)$ take their maximum value 1 when we set $U_{x, \mu}=1$ In this case, we can calculate $W(n)$ and $L_{m}\left(N_{t}, n\right)$ analytically up to high orders. => Worst convergent case of HPE can be studied by combining them.

Scope and convergence of HPE

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)
(\hat{W}_{i}, \hat{P}_{j} in $W(n)$ and $L_{m}\left(N_{t}, n\right)$ take their maximum value 1 when we set $U_{x, \mu}=1$ In this case, we can calculate $W(n)$ and $L_{m}\left(N_{t}, n\right)$ analytically up to high orders. => Worst convergent case of HPE can be studied by combining them.

- Convergence radius (lower bound for the $U_{x, \mu} \neq 1$ case)

Cauchy-Hadamard's

Convergence radius $\underset{n \rightarrow \infty}{\longrightarrow} 1 / 8$, i.e. convergent up to the chiral limit.
<= free Wilson quarks when $U_{x, \mu}=1$
=> HPE reliable up to the chiral limit when sufficiently high orders are taken.

Scope and convergence of HPE

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)
To which order we need to incorporate? <= depends on the value of κ
4. Deviation due to truncation (in the worst convergent case):

\approx For $\mathrm{Nt}=4: \kappa_{c}=0.0603(4)$ [Kiyohara+ ('2I)]
=> LO may have at worst $\approx 10 \%$ error, NLO good enough
For $\mathrm{Nt}=6: \kappa_{c}=0.0877(9)$ [Cuteri+ ('22)], $0.1286(40)$ [Ejiri+ ('20) using eff. pot.]
=> NLO is $\geq 93 \%$ accurate. remaining error can be removed by NNLO or higher
\approx For $\mathrm{Nt}=8: \kappa_{c}=0.1135(8)$ [Cuteri+ ('22)] $\quad>$ NNLO needed for $\geq 95 \%$ accuracy

Effective method to incorporate high orders

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)
Calcuration of high order term becomes quickly difficult with increasing n.
We extend the idea of the effective NLO method [Ejiri+ ('20)] to high orders.
Basic observation: strong correlation of Wilson/Polyakov-type loops among different \mathbf{n}.
Distribution of $L\left(N_{t}, n\right)$ vs. the Polyakov loop Ω
\& qQCD simulation on $32^{3} \times(6,8)$, blue/red slightly below/above $\beta_{\text {trans }}$
\% normalized by the $U x \mu=I$ result L^{0}

$\mathrm{Nt}=8$

Effective method to incorporate high orders

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)
This linear correlation suggests us to approximate

$L\left(N_{t}, n\right) \approx L^{0}\left(N_{t}, n\right) c_{n} \operatorname{Re} \hat{\Omega}$	$N_{t}=6$		$N_{t}=8$
	c_{6}	1	
	c_{8}	0.8112(20)(7)	1
	c_{10}	$0.6280(15)(3)$	0.8327(114)(95)
known from	c_{12}	$0.4736(29)(15)$	$0.6408(36)(27)$
nown from	c_{14}	0.3609(26)(11)	$0.4841(22)(10)$
our MC results:	c_{16}	$0.3106(25)(10)$	$0.3616(21)(6)$
	c_{18}	1.0159(90)(33)	0.2679(16)(3)
	c_{20}	$-0.02771(57)(13)$	$0.2020(13)(2)$

$\approx W(n) \approx W^{0}(n)\left(d_{n} \hat{P}+f_{n}\right)$

n	$d_{n}\left(N_{t}=6\right)$	$f_{n}\left(N_{t}=6\right)$	$d_{n}\left(N_{t}=8\right)$	$f_{n}\left(N_{t}=8\right)$
4	1	0	1	0
6	$1.3625(73)(12)$	$-0.4070(42)(7)$	$1.3366(66)(8)$	$-0.3922(39)(5)$
8	$1.4644(123)(11)$	$-0.6089(72)(6)$	$1.4256(96)(8)$	$-0.5869(57)(5)$
10	$1.3835(156)(10)$	$-0.6590(91)(6)$	$1.3433(117)(8)$	$-0.6367(70)(5)$
12	$1.2140(178)(9)$	$-0.6235(103)(5)$	$1.1752(130)(7)$	$-0.6025(78)(4)$
14	$1.0256(196)(9)$	$-0.5533(114)(5)$	$0.9825(141)(7)$	$-0.5303(85)(4)$
16	$0.8607(219)(9)$	$-0.4811(127)(5)$	$0.8052(153)(8)$	$-0.4512(92)(5)$
18	$0.7481(258)(10)$	$-0.4296(150)(6)$	$0.6698(173)(9)$	$-0.3870(103)(5)$
20	$0.7290(337)(12)$	$-0.4275(196)(7)$	$0.6071(219)(12)$	$-0.3606(131)(7)$

=> Higher order effects can be effectively incorporated in the LO simulation by

$$
\beta \rightarrow \beta^{*}=\beta+\frac{1}{6} N_{f} \sum_{n=4}^{n_{\max }} W^{0}(n) d_{n} \kappa^{n} \quad \lambda \rightarrow \lambda^{*}=N_{f} N_{t} \sum_{n=N_{t}}^{n_{\max }} L^{0}\left(N_{t}, n\right) c_{n} \kappa^{n}
$$

Extension to non-degenerate cases ($\mathrm{Nf}=2+1$ etc.) straightforward.

Study on $\mathbf{N}_{\mathbf{t}}=6$ lattices

Ashikawa+ (WHOT-QCD), ongoing

- $\mathrm{Nt}=6, \mathrm{Ns} / \mathrm{Nt}=\mathrm{LT}=6,(7) 8,9,10,12,,(15)$ ongoing
() Status of B_{4}^{Ω} with NLO:

$$
\lambda=128 N_{f} N_{t} \kappa^{6} \text { for } \mathrm{Nt}=6, \mathrm{Nf}=2, \mathrm{NLO}
$$

Preliminary:
~ $B_{4}^{\Omega} \sim 1.63-1.64$ with $\mathrm{Ns} / \mathrm{Nt} \geq 9$ (cf.) $\mathrm{Z}(2)$ value $=1.604$
is $\lambda_{c} \sim 0.00101=>\kappa_{c} \sim 0.093$ NLO $=>\kappa_{c} \sim 0.0905$ eff. including up to 20th order looks consistent with $\kappa_{c}=0.0877(9)$ by a full QCD simulation [Cuteri+ ('22)]

Conclusion \& outlook

HPE provides us with a reliable and powerful way to study QCD with heavy quarks

- Convergent up to chiral limit + enable large $\mathrm{Ns} / \mathrm{Nt}$ simul.'s + analytic in Nf

■ up to κ_{c} of $\mathrm{Nt}=4, \mathrm{Nf}=2: \mathrm{LO}: \geq 90 \% / \mathrm{NLO}: \geq 99 \%$ accurate
[around κ_{c} of $\mathrm{Nt}=6, \mathrm{Nf}=2$: NLO: $\geq 93 \%$ accurate
Higher orders needed to remove remaining truncation error and for $\mathrm{Nt} \geq 8$.
At $\mathbf{N t}=4, \mathbf{N s} / \mathbf{N t} \geq 9$ needed for $\mathbf{Z}(2)$ FSS
=> NLO study of $\mathrm{B}_{4} \Omega: \kappa_{c}=0.0603(4)$ for $\mathrm{Nf}=2$
~ At $\mathrm{Nt}=6$ with $\mathrm{Ns} / \mathrm{Nt} \geq 9, \kappa_{c} \sim 0.090$ including high orders (preliminary) looks consistent with a full QCD study [Cuteri+ ('22)]
(4t $\mathrm{Nt}=6$, more statistics \& larger $\mathrm{Ns} / \mathrm{Nt}$: ongoing
(1) Continuum extrapolation => large $\mathrm{Nt}=>$ high orders must be taken.

We developed an effective method to incorporate high orders => easy to implement in LO PHB simulations => used in Nt=6 study
(C) HPE powerful also at finite densities: in progress (cf.) Chabane on Monday

We miss our best friend+collaborator

Yusuke Taniguchi

who passed away silently on July 22, 2022.

backup slides

backup slides

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD), PRD 104 (202I)

$$
V\left(\Omega_{\mathrm{R}} ; \lambda, L T\right)=-\ln p\left(\Omega_{\mathrm{R}}\right)_{\lambda, L T},
$$

According to Eq. (15), this quantity should behave around the $C P$ as

$$
\begin{equation*}
\Delta \Omega(\lambda, L T)=(L T)^{y_{h}-3} \Delta \tilde{\Omega}\left(\left(\lambda-\lambda_{c}\right)(L T)^{1 / \nu}\right) \tag{47}
\end{equation*}
$$

FIG. 13. Positions of peaks of the distribution function $p\left(\Omega_{R}\right)$ measured on the transition line.

backup slides

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

$W^{0}(4)$	288	$W^{0}(20)$	$1.54422361 \times 10^{14}$	$W^{0}(36)$	$-5.58410362 \times 10^{27}$
$W^{0}(6)$	8448	$W^{0}(22)$	$2.83682900 \times 10^{15}$	$W^{0}(38)$	$-2.91018925 \times 10^{29}$
$W^{0}(8)$	245952	$W^{0}(24)$	$-2.40028584 \times 10^{16}$	$W^{0}(40)$	$-1.50223497 \times 10^{31}$
$W^{0}(10)$	7372800	$W^{0}(26)$	$-6.88836562 \times 10^{18}$	$W^{0}(42)$	$-7.71380102 \times 10^{32}$
$W^{0}(12)$	225232896	$W^{0}(28)$	$-5.41133954 \times 10^{20}$	$W^{0}(44)$	$-3.95168998 \times 10^{34}$
$W^{0}(14)$	6906175488	$W^{0}(30)$	$-3.39122203 \times 10^{22}$	$W^{0}(46)$	$-2.02386871 \times 10^{36}$
$W^{0}(16)$	208431502848	$W^{0}(32)$	$-1.93668514 \times 10^{24}$	$W^{0}(48)$	$-1.03783044 \times 10^{38}$
$W^{0}(18)$	$6.00259179 \times 10^{12}$	$W^{0}(34)$	$-1.05424635 \times 10^{26}$	$W^{0}(50)$	$-5.33468075 \times 10^{39}$

$L_{1}^{0}(4,4)$	48	$L_{1}^{0}(10,10)$	1228.8	$L_{1}^{0}(18,18)$	174762.67
$L_{1}^{0}(4,6)$	1728	$L_{1}^{0}(10,12)$	331776	$L_{1}^{0}(18,20)$	160432128
$L_{1}^{0}(4,8)$	45792	$L_{1}^{0}(10,14)$	52862976	$L_{1}^{0}(18,22)$	75497472000
$L_{1}^{0}(4,10)$	645120	$L_{1}^{0}(10,16)$	6258180096	$L_{1}^{0}(18,24)$	2.36626×10^{13}
$L_{1}^{0}(4,12)$	-26224128	$L_{1}^{0}(10,18)$	5.99330×10^{11}	$L_{1}^{0}(18,26)$	5.50232×10^{15}
$L_{1}^{0}(4,14)$	-3201067008	$L_{1}^{0}(10,20)$	4.87727×10^{13}	$L_{1}^{0}(18,28)$	1.01809×10^{18}
$L_{1}^{0}(4,16)$	-2.14087×10^{11}	$L_{1}^{0}(10,22)$	3.47446×10^{15}	$L_{1}^{0}(18,30)$	1.57315×10^{20}
$L_{1}^{0}(4,18)$	-1.19007×10^{13}	$L_{1}^{0}(10,24)$	2.20156×10^{17}	$L_{1}^{0}(20,20)$	629145.6
$L_{1}^{0}(4,20)$	-6.00757×10^{14}	$L_{1}^{0}(10,26)$	1.24531×10^{19}	$L_{1}^{0}(20,22)$	717225984
$L_{1}^{0}(4,22)$	-2.84486×10^{16}	$L_{1}^{0}(10,28)$	6.20798×10^{20}	$L_{1}^{0}(20,24)$	4.11140×10^{11}
$L_{1}^{0}(4,24)$	-1.28105×10^{18}	$L_{1}^{0}(10,30)$	2.59861×10^{22}	$L_{1}^{0}(20,26)$	1.54445×10^{14}
$L_{1}^{0}(4,26)$	-5.50874×10^{19}	$L_{1}^{0}(12,12)$	4096	$L_{1}^{0}(20,28)$	4.24543×10^{16}
$L_{1}^{0}(4,28)$	-2.25576×10^{21}	$L_{1}^{0}(12,14)$	1622016	$L_{1}^{0}(20,30)$	9.17892×10^{18}
$L_{1}^{0}(4,30)$	-8.69402×10^{22}	$L_{1}^{0}(12,16)$	360603648	$L_{1}^{0}(22,22)$	2287802.18
$L_{1}^{0}(6,6)$	128	$L_{1}^{0}(12,18)$	57416810496	$L_{1}^{0}(22,24)$	3170893824
$L_{1}^{0}(6,8)$	11520	$L_{1}^{0}(12,20)$	7.19497×10^{12}	$L_{1}^{0}(22,26)$	2.17478×10^{12}
$L_{1}^{0}(6,10)$	716544	$L_{1}^{0}(12,22)$	7.51820×10^{14}	$L_{1}^{0}(22,28)$	9.64167×10^{14}
$L_{1}^{0}(6,12)$	35891712	$L_{1}^{0}(12,24)$	6.80443×10^{16}	$L_{1}^{0}(22,30)$	3.09123×10^{17}
$L_{1}^{0}(6,14)$	1464910848	$L_{1}^{0}(12,26)$	5.46987×10^{18}	$L_{1}^{0}(24,24)$	8388608
$L_{1}^{0}(6,16)$	43817011200	$L_{1}^{0}(12,28)$	3.96931×10^{20}	$L_{1}^{0}(24,26)$	13891534848
$L_{1}^{0}(6,18)$	3.17933×10^{11}	$L_{1}^{0}(12,30)$	2.62442×10^{22}	$L_{1}^{0}(24,28)$	1.12307×10^{13}

backup slides

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

Fig. 11. Effective critical point $\kappa_{\text {c, eff }}$ in two-flavor QCD for $N_{t}=6$ as a function of $n_{\text {max }}$. The black circle and red square symbols are for $\kappa_{\mathrm{c}, \text { LO }}$ obtained on a $24^{3} \times 6$ and a $32^{3} \times 6$ lattice, respectively.

backup slides

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD), PTEP (2022)

Fig. 14. Upper bound of μ / T such that higher- m terms are small, as given in Eq. (71).

$$
\frac{\mu}{T}<\ln \left|\frac{L_{m}^{0}\left(N_{t}, n\right)}{L_{m+1}^{0}\left(N_{t}, n\right)}\right|
$$

