QCD topology with electromagnetic fields and the axion-photon coupling

B. Brandt, F. Cuteri, G. Endrodi, J. J. Hernández Hernández and G. Markó

Lattice 2022, Bonn

Outline

- Topology in QCD
- Axions and topology
- $g_{a \gamma \gamma}$, on the lattice?
- Preliminary results: $g_{a \gamma \gamma}^{Q C D}$ and $\chi_{t o p}$
- Conclusions and further work

Topology in QCD

Topology in QCD

- We usually expect that our gluon fields vanish at the boundary $|x| \rightarrow \infty$,

$$
A_{\mu}(x)=0 .
$$

- But we need to consider all possible gauge transformations:

$$
A_{\mu}=i \Omega \partial_{\mu} \Omega^{\dagger}, \Omega \in S U(3) .
$$

Hence we have an infinite set of solutions.

- They can be classified by an integer label, the "winding number".

$$
Q_{t o p}=\int d^{4} x q_{t o p}(x), \quad q_{t o p}=\frac{1}{32 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr} G_{\mu \nu} G_{\rho \sigma} .
$$

In general, $Q \propto \int F \widetilde{F}$ for any gauge group.

Winding numbers in $U(1)$

Axions and topology

Strong CP problem

- In principle, the QCD Lagrangian should include an extra term:

$$
\mathcal{L}_{\mathrm{QCD}+\theta}=\mathcal{L}_{\mathrm{QCD}}+\theta q_{\text {top }} .
$$

- This term is CP and T odd.
- Induces an electric dipole moment in $n:|\theta|<10^{-10}$ Abel et al 2020.
- Why don't we see it \because ? \longrightarrow Axions ? Peccei, Quinn '77

$$
\mathcal{L}_{a}=\frac{1}{2} \partial_{\mu} a \partial^{\mu} a+\frac{a}{f_{a}} q_{t o p}+\mathcal{L}_{\mathrm{int}} .
$$

- Essence of the idea: new pseudoscalar a whose minimum is $\langle a\rangle=-\theta f_{a}$.

Topological susceptibility $\chi_{\text {top }}$

- Is the second moment of $Q_{t o p}: \chi_{t o p}=\frac{T}{V}\left\langle Q_{t o p}^{2}\right\rangle$
- It is also the mass of the axion:

$$
m_{a}^{2}=\left.\frac{T}{V} \frac{\delta^{2}}{\delta a^{2}} \log \mathcal{Z}\left(\frac{a}{f_{a}}\right)\right|_{a=0}=\left.\frac{1}{f_{a}^{2}} \frac{T}{V} \frac{\delta^{2}}{\delta \theta^{2}} \log \mathcal{Z}(\theta)\right|_{\theta=0}=\frac{\chi_{t}}{f_{a}^{2}}
$$

- Hence, an analysis of χ_{t} gives information on m_{a}.
- Current estimates from ChPT. : $m_{a}=5.70(6)(4)\left(10^{12} \mathrm{GeV} / f_{a}\right) \mu \mathrm{eV}$ Cortona et al 2016.

■ Lattice calculations give almost the same central value but with a bigger error Borsanyi et al 2016.

- It also gives us cosmological information about a.

The photon-axion coupling $g_{a \gamma \gamma}^{Q C D}$

- The axion couples directly and indirectly to photons.
- ChPT calculations show:

$$
\mathcal{L}_{a \gamma \gamma}=\frac{1}{4} g_{a \gamma \gamma} a F_{\mu \nu} \widetilde{F}^{\mu \nu}=g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B} .
$$

- Current estimates from ChPT.: $g_{a \gamma \gamma}=g_{a \gamma \gamma}^{0}+g_{a \gamma \gamma}^{Q C D}=\frac{\alpha_{e m}}{2 \pi f_{a}}\left(\frac{E}{N}-1.92(4)\right)$ Cortona et al 2016.

$Q_{t o p}$ and $g_{a \gamma \gamma}^{Q C D}$

- If we include both electric and magnetic background fields, the only CP odd operators in our theory are:

$$
\operatorname{Tr} G_{\mu \nu} \widetilde{G}^{\mu \nu} \& \mathbf{E} \cdot \mathbf{B} .
$$

So by symmetry arguments, $Q_{\text {top }}$ can only be (for weak fields):

$$
Q_{t o p} \propto \mathbf{E} \cdot \mathbf{B}+\mathcal{O}\left([\mathbf{E} \cdot \mathbf{B}]^{3}\right)
$$

- By looking at \mathcal{Z} :

$$
\left.\frac{\delta \log \mathcal{Z}(a)}{\delta a}\right|_{a=0}=\frac{\left\langle Q_{t o p}\right\rangle_{E, B}}{f_{a}} \longrightarrow g_{a \gamma \gamma}^{Q C D} f_{a}=\left.\frac{T}{V} \frac{\partial^{2}}{\partial \mathbf{E} \partial \mathbf{B}}\left\langle Q_{t o p}\right\rangle_{E, B}\right|_{\mathbf{E}, \mathbf{B}=0}
$$

- So for homogeneous, static and weak EM fields, we can assume:

$$
\frac{T}{V}\left\langle Q_{t o p}\right\rangle_{E, B} \approx \frac{g_{a \gamma \gamma}^{Q C D} \cdot f_{a}}{e^{2}} e^{2} \mathbf{E} \cdot \mathbf{B} \text { and } g_{a \gamma \gamma}^{Q C D}<0 .
$$

Computation of $g_{a \gamma \gamma}^{Q C D}$ on the lattice

Approaches to the computation of $g_{a \gamma \gamma}^{Q C D}$

- Three ways come to mind for obtaining $g_{a \gamma \gamma}^{Q C D}$:
- Measuring the index of D and fitting to $\mathbf{E} \cdot \mathbf{B}$. Recent idea.
- Computing $\left.\frac{T}{V} \frac{\partial^{2} \log Z}{\partial E \partial a}\right|_{a, E=0}$ and fitting to B. In implementation.

■ Measuring $\left\langle Q_{t o p}\right\rangle_{E, B}$ and fitting to $\mathbf{E} \cdot \mathbf{B}$. Today's talk!

- We are going to simulate gluons with background (homogeneous) EM fields. Thus, we have to deal with two issues:

1. The sign problem. We can't simulate real electric fields, so $\mathbf{E} \longrightarrow i \mathbf{E}$
2. UV fluctuations of the gluon fields \longrightarrow Wilson flow.

Preliminary results

$\chi_{t}(B)$ vs T : preliminary results

$\chi_{t}(B)$ as a function of T. Note that $\sqrt{\chi_{t}}=m_{a} f_{a}$.

Shift of $Q_{\text {top }}$: preliminary results

Shift of $Q_{t o p}$ at non-zero $\mathbf{E}_{I} \cdot \mathbf{B}$. Effect also shown in D'Elia et al 2016.

$\left\langle Q_{t o p}\right\rangle_{E_{I}, B}$ flow: preliminary results (I)

Wilson evolution of $\left\langle Q_{t o p}\right\rangle_{E_{I}, B}$ for a certain value of $\mathbf{E}_{I} \cdot \mathbf{B}$.

$\left\langle Q_{t o p}\right\rangle_{E_{I}, B}$ flow: preliminary results (II)

Wilson evolution of $\left\langle Q_{t o p}\right\rangle_{E_{I}, B}$. Note the plateaus.

$\left\langle Q_{\text {top }}\right\rangle_{E_{I}, B}$ vs $\mathbf{E}_{I} \cdot \mathbf{B}:$ preliminary results

$\left\langle Q_{t o p}\right\rangle_{E_{I}, B}$ as a function of $\mathbf{E}_{I} \cdot \mathbf{B}$.

$g_{a \gamma \gamma}^{Q C D}$ flow: preliminary results

$g_{a \gamma \gamma}^{Q C D}$ as a function of flow time for two different methods.

Conclusions and further work

Conclusions and further work

- We have shown:

■ how there is an interplay between EM fields and $S U(3)$ topology.
■ that there is a linear response of $Q_{t o p}$ with $\mathbf{E}_{I} \cdot \mathbf{B}$ for weak fields.

- preliminary results for $\chi_{\text {top }}$ as a function of \mathbf{B}, T as well as for $g_{a \gamma \gamma}^{Q C D}$.
- Further work:
- Explore the other methods for computing $g_{a \gamma \gamma}^{Q C D}$, compare results and study the systematic errors.
■ Generate more statistics and continuum limit.w
■ Eventually \longrightarrow Use experimental bounds and lattice results to constrain axion models.
- For more about EM fields on the lattice \longrightarrow previous talks by $A . D$. Marques Valois, Fri. 14:10 and E. Garnacho Velasco, Wed. 17:50!

Thank you for your attention!

Backup slide: EM field flux quantisation

We use $U(1)$ links for the magnetic field: $u_{\mu}=e^{i a q A_{\mu}} \in U(1)$.

$$
\oint A_{\mu} d x_{\mu}=S B
$$

$$
\begin{aligned}
\mathbf{B} & =B \hat{z} \\
\mathbf{B} & =\overrightarrow{\boldsymbol{\nabla}} \times \mathbf{A} \\
A_{y} & =B x \quad A_{x}=A_{z}=0
\end{aligned}
$$

$$
\oint A_{\mu} d x_{\mu}=\left(L_{x} L_{y}-S\right) B
$$

Unambiguous phase:
Stoke's theorem must hold in the torus.

$$
e^{-i q B S}=e^{i q B\left(L_{x} L_{y}-S\right)} \quad q B=\frac{2 \pi N_{b}}{L_{x} L_{y}}, \quad N_{b} \in \mathbb{Z}
$$

$$
\begin{aligned}
& u_{x}= \begin{cases}e^{-i q B L_{x} y} & \text { if } x=L_{x}-a \\
1 & \text { if } x \neq L_{x}-a\end{cases} \\
& u_{y}=e^{i a q B x} \quad 0 \leq x \leq L_{x}-a
\end{aligned} 土+u_{z}=1 .
$$

Backup slide: The Atiyah-Singer index theorem

- EM fields can induce topologies in the gluon sector. But how? \longrightarrow Index theorem.
- The index theorem says (for QCD) Atiyah, Singer '71:

$$
\operatorname{Index}(D) \equiv n_{-}-n_{+}=Q_{t o p}
$$

Since in QCD $\left\langle Q_{t o p}\right\rangle=0$, we don't see imbalances in chirality.

- But after including electromagnetic fields the situation is different:

$$
Q_{t o p} \longrightarrow Q_{t o p}+Q_{U(1)} .
$$

We have two different topological contributions to the zero modes.

- Path integral favours as little zero modes as possible: $\operatorname{det} M \uparrow \uparrow$.
- Hence, it selects gluon field configurations such that:

$$
Q_{U(1)} \uparrow \Longleftrightarrow Q_{t o p} \downarrow
$$

