Estimation of the photon production rate using imaginary momentum correlators

Csaba Török

in collaboration with:

Marco Cé, Tim Harris, Ardit Krasniqi, Harvey Meyer, Samuel Ruhl

39th International Symposium on Lattice Field Theory, Bonn, 2022

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

electromagnetic probes (photons, dileptons) interact weakly with the QGP medium \rightarrow on-going experimental research (RHIC, LHC, GSI)

direct photons = total - [decay photons]

- discrepancies: direct photon excess at low p_T see e.g. Gale, Paquet, Schenke, Shen '21
- dominant contribution at low *p*_T: **thermal photons**

Correlators at imaginary spatial momentum

theory input: thermal photon emission rate

 \longrightarrow thermal photon yield

model input: hydro

Thermal photon emission rate per unit volume of the QGP:

$$\frac{\mathrm{d}\Gamma_{\gamma}(\omega)}{\mathrm{d}\omega} = \frac{\alpha_{\mathrm{em}}}{\pi} \frac{1}{e^{\omega/T} - 1} \,\omega \sigma(\omega) + \mathcal{O}(\alpha_{\mathrm{em}}^2)$$

$$(\omega) = a_{\mathrm{em}}(\omega, k = \omega) \qquad a_{\mathrm{em}} = \frac{1}{2} (\delta i i - k_{\mathrm{em}}^{\dagger} k_{\mathrm{em}}^{\dagger} / k_{\mathrm{em}}^2) \,\omega(\omega, \vec{k})$$

where $\sigma(\omega) \equiv \rho_T(\omega, k = \omega)$, $\rho_T = \frac{1}{2} (\delta^{ij} - k^i k^j / k^2) \rho_{ij}(\omega, \vec{k})$

Correlators at imaginary spatial momentum

theory input: thermal photon emission rate

→ thermal photon yield

model input: hydro

Thermal photon emission rate per unit volume of the QGP:

$$\frac{\mathrm{d}\Gamma_{\gamma}(\omega)}{\mathrm{d}\omega} = \frac{\alpha_{\mathrm{em}}}{\pi} \frac{1}{e^{\omega/T} - 1} \,\omega\sigma(\omega) + \mathcal{O}(\alpha_{\mathrm{em}}^2)$$

where $\sigma(\omega) \equiv \rho_T(\omega, k = \omega)$, $\rho_T = \frac{1}{2} (\delta^{ij} - k^i k^j / k^2) \rho_{ij}(\omega, \vec{k})$

Meyer '18

$$\begin{split} H_{E}(\omega_{n}) &\equiv G_{E}^{T}(\omega_{n}, k = i\omega_{n}), \qquad \omega_{n} = 2n\pi T \\ &= -\frac{1}{2}\sum_{i=1}^{2}\int_{0}^{\beta} \mathrm{d}x_{0}\int \mathrm{d}^{3}x \,\mathrm{e}^{\mathrm{i}\omega_{n}x_{0}} \,\mathrm{e}^{-\mathrm{i}(\mathrm{i}\omega_{n})x_{3}} \langle J_{i}(x)J_{i}(0)\rangle \end{split}$$

Dispersion relation:

$$H_{E}(\omega_{n}) = -\frac{\omega_{n}^{2}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\omega} \frac{\sigma(\omega)}{\omega^{2} + \omega_{n}^{2}}$$

Lattice estimator of H_E

$$H_{E}(\omega_{n}) = -\sum_{i=1}^{2} \int_{0}^{\beta} \mathrm{d}x_{0} \int \mathrm{d}^{3}x \left(\underbrace{\mathrm{e}^{\mathrm{i}\omega_{n}x_{0}}}_{\mathrm{static}} - \underbrace{\mathrm{e}^{\mathrm{i}\omega_{n}x_{2}}}_{\mathrm{non-static}} \right) \, \mathrm{e}^{\omega_{n}x_{3}} \langle J_{i}(x)J_{i}(0) \rangle$$
$$= -\int_{-\infty}^{\infty} \mathrm{d}x_{3} \, \mathrm{e}^{\omega_{n}x_{3}} \left[\underbrace{\mathsf{G}_{s}(\omega_{n}, x_{3})}_{\mathrm{static}} - \underbrace{\mathsf{G}_{\mathrm{ns}}(\omega_{n}, x_{3})}_{\mathrm{non-static}} \right]$$

subtraction term: makes the integral finite by power counting
 : vanishes in the continuum limit

•
$$H_E(\omega_n) < 0$$

X7, n=1, conserved-conserved

Strategy:

- measure the screening correlators
 G_{ns} and G_s
- fit their tails with single state fits
- model the tail of their difference

Lattice setup

ensembles:

- $N_f = 2$, clover-improved Wilson fermions
- $m_\pi pprox 280 \; {
 m MeV}$
- $T \approx 250 \text{ MeV}$
- three lat. spacings: 0.05, 0.04, 0.033 fm (volume \sim (3.1 fm)³) $64^3 \times 16$, $80^3 \times 20$, $96^3 \times 24$
- 1500-2000 configurations with 64 point sources

observable:

- I = 1 contribution
- different discretizations using the local/conserved currrent
- focus on the n = 1 & n = 2 Matsubara sectors

Modelling the tail of the integrand

- single state fits on the screening correlators:
 A cosh[m₀(x L/2)]
- plateau regions consist of only a few points
- three representatives from AIC-based histogram

Modelling the tail of the integrand

- single state fits on the screening correlators:
 A cosh[m₀(x L/2)]
- plateau regions consist of only a few points
- three representatives from AIC-based histogram
- modelling the tail reduces errors by a factor of ~2.5 on the coarsest ensemble
- different switching points give consistent total integral results

Continuum extrapolations

Aug 9, 2022 7 / 11

-

Histograms of continuum extrapolated results

Estimation of the photon prod. rate...

Results for first Matsubara sector (n = 1)

observable	value at the continuum limit
$ H_E /T^2$	$0.670(6)_{\rm stat}(2)_{ m sys}$
$sd(x_{\mathrm{w}} T=1)$	$0.579(3)_{ m stat}(1)_{ m sys}$
$Id(x_{\mathrm{w}}T=1)$	$0.091(5)_{\rm stat}(2)_{ m sys}$
$m_0^{ m non-static}/T$	$9.75(18)_{ m stat}(9)_{ m sys}$
$m_0^{ m static}/T$	$8.82(9)_{\rm stat}(6)_{\rm sys}$

comparisons:

• free theory: $|H_E|/T^2 = 0.5$ Meyer '18

•
$$\mathcal{N}=4$$
 SYM: $|H_E|/\chi_s^{SYM}=0.67$ Meyer '18 while $|H_E|^{(Iat)}/\chi_s=0.75$

• static screening mass for n = 1 on our coarsest ensemble using the dispersion relation $\sqrt{5.76^2 + (2\pi n)^2} = 8.52$

Brandt, Francis, Laine, Meyer '14

Similar steps for n=2: more noisy

- data is more noisy
- screening masses are large: $m_0 a \sim 1$ on the coarsest ensemble
- n = 2 result is compatible within errors with the n = 1 result
- dispersion rel., $\sigma(\omega) > 0$: $\Longrightarrow |H_E(r)| > |H_E(n)|$ if r > n

Summary and outlook

- first analysis of imaginary spatial momentum correlators at finite T in the n = 1 & n = 2 Matsubara sectors
- simultaneous continuum extrapolation of H_E/T^2 of different discretized correlators using three lattice spacings
- determining H_E/T^2 for $n \ge 2$ (or modelling using e.g. NLO pert. theory) might allow a more educated guess for the photon rate at this temperature

Thank you for your attention!

Csaba Török

Estimation of the photon prod. rate...

Aug 9, 2022 1/3

BACKUP

Csaba Török

Discrepancies between experiment and theory

source of figs: [2106.11216]

- discrepancy between PHENIX & STAR
- discrepancy between PHENIX & theory (/ALICE & theory)
- thermal photon yield: assuming weakly coupled plasma + hydro