Topological features of the deconfinement transition in quenched QCD

Reka A. Vig and S. Borsányi, Z. Fodor, D. Godzieba, P. Parotto, R. Kara

> Lattice 2022 August 9, 2022

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Topology at the transition region

In the crossover region of the QCD transition several observables go through rapid changes.

Some known phenomena:

- . The absolute value of the Polyakov loop |P| increases,
- . Dirac operator spectrum: $ho(\lambda)$ drops to zero at the origin
- . Restoration of chiral symmetry, marked by the drop of $\left< ar{\Psi} \Psi \right>$
- . Suppression of topological charge ${\boldsymbol{Q}}$ fluctuations

In this presentation we focus on two parametars of the topological charge density P(Q):

- The topological susceptibility χ
- The *b*₂ coefficient (from the expansion of the free energy density)

Topological features of the deconfinement transition in quenched QCD

Model

Quenched theory, the limit of large quark masses

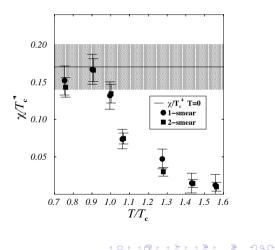
- \rightarrow pure SU(3) gauge theory
- \rightarrow genuine phase transition

|P|(T) has a discontinuity at the transition.

Is there a discontinuity in $\chi(T)$ also?

What happens with $b_2(T)$?

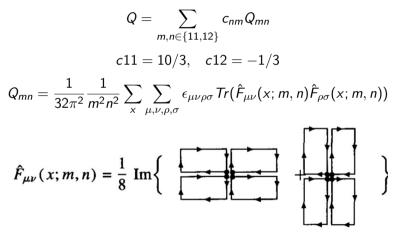
There are evidences that χ goes through a sudden drop at T_c [Allés et al., 1996]



Topological features of the deconfinement transition in quenched QCD

Topological charge

Measured Symanzik improved topological charge on the lattice (from ensemble simulated with Symanzik improved gauge action) :



[de Forcrand et al. (1997)]

Topological features of the deconfinement transition in quenched QCD

Moments of the topological charge distribution

The topological susceptibility and b_2 are proportional to the second and fourth cumulants of P(Q):

$$\chi = rac{\langle Q^2
angle}{V_4} \quad (\langle Q
angle = 0),$$
 $b_2 = -rac{\langle Q^4
angle - 3 \langle Q^2
angle^2}{12 \langle Q^2
angle}$

They also appear in the expansion of $f(\theta \approx 0)$:

$$f(heta)=f(0)+rac{\chi heta^2}{2}+rac{\chi b_2 heta^4}{2}+\mathcal{O}(heta^6)$$

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

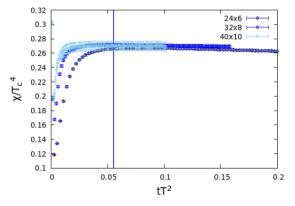
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんぐ

Topological susceptibility

To make χ at different lattice spacing comparable:

$$\frac{\chi}{T_c^4} = \left(\frac{T}{T_c}\right)^4 \left\langle Q^2 \right\rangle \frac{N_t^4}{V_4}$$

 \boldsymbol{Q} is defined through the gradient flow.



Flow time is fixed on the physical scale as we go to the continuum

$$tT^2 = 1/18$$

$$t = 1/18 \cdot a^2 \cdot N_t^2$$

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��や

Simulation details

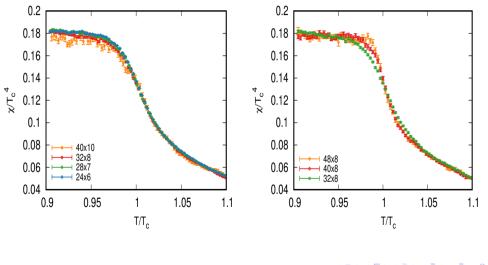
Generation of gauge ensemble with tree level Symanzik improved gauge action. Configurations were generated with parallel tempering around β_c . We set β_c with precision $10^{-4} \frac{T}{T_c}$ and determined gradient flow only at the critical coupling.

			N_t		
		6	7	8	10
	4	497478	64901	41832	37915
LT	5	20038	6522	36606	13469
	6	67185	7875	53325	6314

We also generated broader temperature scans, in those runs a sequence of stout smearings was used to define Q, with a smearing radius matching our earlier definition.

Topological features of the deconfinement transition in quenched QCD

Topological susceptibility

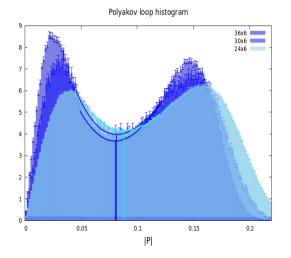


Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

・ロト・日本・日本・日本・日本・日本

Discontinuity in the Polyakov loop



Topological features of the deconfinement transition in quenched QCD

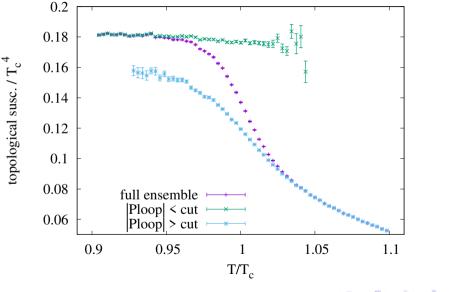
Reka A. Vig

|P| is the order parameter

Distinguishing hot and cold phases: finding the minimum between the two peaks of |P|

・ロト・日本・モート モー うへの

Discontinuity of $\boldsymbol{\chi}$



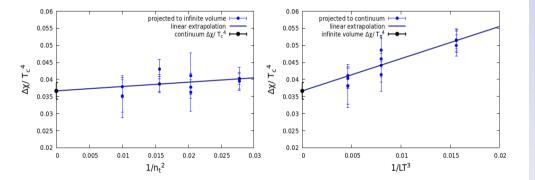
Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

・ロト・日本・日本・日本・日本・日本

Discontinuity of χ

 χ/T_c^4 were calculated in both phases with different values of N_t and LTWe determined the continuum extrapolated values of $\Delta\chi/T_c^4$ in the infinite volume limit.



Result:
$$\Delta \chi / T_c^4 = 0.0367(24)$$

4

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Curvature of the phase line

Clausius-Clapeyron-like equation [D'Elia & Negro 1205.0538]:

$$egin{aligned} rac{{\mathcal{T}}_c(heta)}{{\mathcal{T}}_c(0)} &= 1 - R_ heta heta^2 + \mathcal{O}(heta^4) \ R_{ heta,\mathcal{T}} &= rac{\Delta \chi}{2\Delta \epsilon} \end{aligned}$$

Continuum limit of the curvature $R_{\theta} = 0.0178(5)$ [D'Elia & Negro 1306.2919] together with continuum limit of the latent heat $\Delta \epsilon / T_c^4 = 1.025(21)_{stat}(27)_{sys}$ [Borsanyi et al. (2022)] gives

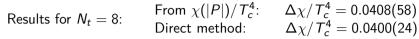
$$\Delta \chi / T_c^4 = 0.0365(18)$$

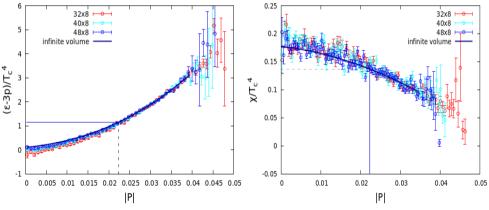
Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

Connection to latent heat

From $\Delta \epsilon$ the infinite volume value of |P| can be determined





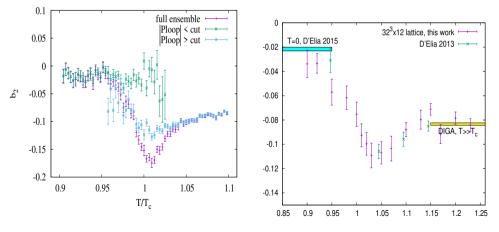
Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

b_2 coefficient

 $b_{\rm 2}$ has a dip where the two phases coexist i.e. it is a sign that the transition is first order.



Topological features of the deconfinement transition in quenched QCD

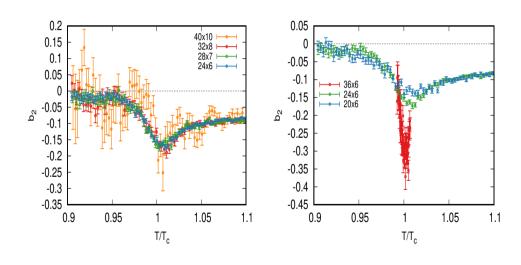
Reka A. Vig

・ロト ・日本・ 山田・ ・日・ うくの

b_2 coefficient

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig



(ロ)、

Summary

We studied the topological features of the 1st order quenched QCD phase transition.

We calculated the discontinuity of $\chi(T)/T_c^4$ at the transition temperature.

Continuum limit	$\Delta\chi/T_c^4$		
Direct method	0.0367(24)		
From R_{θ}	0.0365(18)		
	. ,		
$N_t = 8$			
$N_t = 8$ Direct method	0.0400(24) 0.0408(58)		

We also studied the b_2 cumulant at the temperature region around T_c . The shape of the $b_2(T)$ curve around T_c signals the coexistence of the two phases.

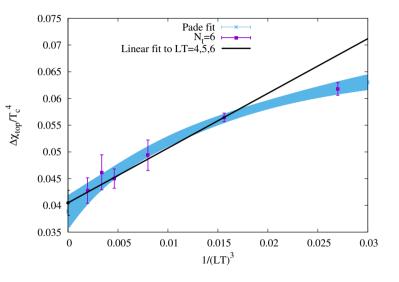
Topological features of the deconfinement transition in quenched QCD

backup

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

Volumes included in the fit



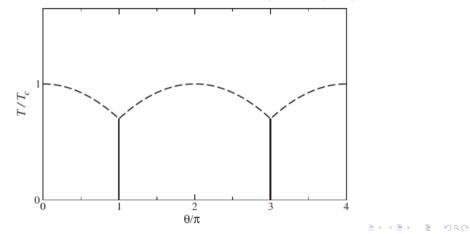
Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

Imaginary theta

$$\mathcal{L}_{ heta}=rac{1}{4}F^a_{\mu
u}F^a_{\mu
u}-i heta q(x) \mbox{ with } q(x)=rac{g^2}{64\pi^2}\epsilon_{\mu
u
ho\sigma}rac{1}{4}F^a_{\mu
u}F^a_{\mu
u}$$

PHYSICAL REVIEW D 88, 034503 (2013)



Topological features of the deconfinement transition in quenched QCD

Curvature of the Phase diagram

$$\epsilon = \frac{T^2}{V_3} \partial_T \log(Z) \quad Z = \exp\left(-\frac{-V_3 f(T)}{T}\right)$$
$$f_c(T_c) = f_d(T_c)$$
$$f_{c/d}(T) \approx A_{c/d} \frac{T - T_c}{T_c} + \frac{\chi_{c/d}}{T} \frac{\theta^2}{2}$$
$$\Delta \epsilon = T_c(A_c - A_d)$$

At $T_c(\theta)$:

$$egin{aligned} &(A_c-A_d)(rac{T_c(heta)-T_c(0)}{T_c(0)})=rac{\Delta\chi heta^2}{2T_c(heta)}+\mathcal{O}(heta^4)\ &rac{T_c(heta)}{T_c(0)}=1-rac{\Delta\chi heta^2}{2\Delta\epsilon}+\mathcal{O}(heta^4) \end{aligned}$$

Topological features of the deconfinement transition in quenched QCD

Reka A. Vig

<ロト < @ ト < E ト < E ト E のQで</p>