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Physical motivations

Glueball states are predicted on the basis of QCD confinement and are
currently searched in collider experiments. Refinement of QCD theoretical

predictions about glueball masses is thus of utmost importance in this respect.

Determining glueball masses from numerical lattice QCD simulations is a
long-standing problem that has been widely investigated.

Main computational framework: large-N SU(N) pure-gauge theories:

• large-N is “close” to N = 3, as corrections are suppressed as powers of 1/N

• no quarks + 1/N = 0 =⇒ all glueballs are exactly non-interacting and
with ∞ lifetime

Overall, this framework provides acceptable approximation of real-world QCD,
and an interesting theoretical ground to provide useful predictions.

(See also plenary talk by D. Vadacchino on glueball hunting.)
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Topological critical slowing down at large N

Extracting glueball masses from lattice gauge configurations highly-non trivial
→ several sources of systematic errors

Huge efforts to refine glueball mass extraction methods from the lattice in
recent years. Serious systematic that has never been checked in a satisfactory

way: topological freezing.

As a→ 0 or N →∞, standard local algorithms become less and less effective
in changing the global topological charge Q of a gauge configuration =⇒

Markov chain remains trapped in a fixed topological sector.

(Fig. from Del Debbio et al., 2002)
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Glueball masses and topology

Computing a glueball mass M on a finite volume and in a fixed
topological sector leads to a bias (Brower et al., 2002; Aoki et al., 2007)
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• SYM(θ) = Sgluons + iθQ
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−→ θ-dependent vacuum energy

• MQ = Glueball mass in fixed topological sector Q
• M = Glueball mass averaged over all topological sectors

• χ ≡ 〈Q
2〉
V

−→ Topological Susceptibility

No satisfactory check of possible systematics related to fixed topology
due to topological freezing at large N so far
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Solution: parallel tempering on boundary conditions
Proposed for 2d CPN−1 models (Hasenbusch, 2017; Berni, CB et al., 2019),

recently implemented for 4d SU(N) pure-gauge theories (CB et al., 2021, 2022)

• consider a collection of Nr lattice replicas

• replicas differ for boundary conditions on small sub-region: the defect

• each replica is updated with standard methods

• after updates, propose swaps among configurations via Metropolis test

• other ingredients: hierarchic updates + translation of periodic replica

Links crossing the defect: β → β · c(r).

Periodic: c(0) = 1. Open: c(Nr − 1) = 0. Interpolating
replicas: 0 < c(r) < 1.

Decorrelation of Q improved thanks to open boundaries
copy, where Q is decorrelated faster.

Observables computed on periodic copy → easier to
have finite-size effects under control.
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Results with parallel tempering - SU(6), a ' 0.0938 fm
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Recap of state-of-the-art methods for glueball masses
(Berg et al., 1983; Teper et al., 1987; Morningstar et al., 1999; Lucini et al., 2001, 2004, 2010; Hong et al.,

2017, Bennett et al., 2020; Athenodorou et al., 2020, 2021; and many more. . . )

• Choose a proper variational basis B = {Oi(t)} of operators with
compatible quantum numbers with respect to the desired channel

• Operators O(t) =∑~xO(~x, t): zero-momentum gauge-invariant operators
built in terms of traces of product of links along closed spatial paths

• Compute the correlation matrix Cij(t) = 〈Oi(t)Oj(0)〉 and solve the
GEVP problem Cij(t)vj = λ(t, t′)Cij(t

′)vj

• For the ground state in the selected channel, it is sufficient to consider vi
related to the largest eigenvalue λ(t, t′)

• The best overlapping operator between the vacuum and the desired
glueball state is Cbest(t) ≡ Cij(t)vivj ∼

t→∞
exp {−amt}

• Extract the glueball state mass looking for a plateu in

ameff(t) ≡ − log

(
Cbest(t+ 1)

Cbest(t)

)
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Results for low-lying glueball masses - SU(6)
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Perfect agreement within precision with results of (Athenodorou & Teper, 2021)
obtained with standard algorithms, also in channels with same quantum numbers of Q
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Conclusions
Take-home messages

• First computation of glueball masses at large-N without topological
freezing

• No sizable systematic related to topological freezing observed within our
level of precision

• Parallel tempering on boundary conditions is an affordable and viable
solution to fight topological freezing: can be easily adopted in future more
extensive studies with larger values of N or finer lattice spacings a

Future outlooks

• Bias on computation of Mglueball due to fixed topology related to
d2Mglueball

dθ2

∣∣
θ=0

. Direct computations of this quantity?
Only reported result in the literature: N = 3 for 0++ state. Possible
improvements from imaginary-θ method + parallel tempering.

• What happens if topological charge density Q(t) =
∑
~x q(~x, t) is included

in variational basis for channels with PC = −+? Would be interesting to
investigate.
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