
Isospin Breaking Effects in the 2-Flavor

Schwinger Model
Nuha Chreim, Christian Hölbling, Niklas Pielmeier*, Lukas Varnhorst

Abstract

The automatic fine-tuning of isospin breaking effects by conformal coalescence

found by Howard Georgi [1] in the 2-flavor Schwinger model is studied. Nu-

merical investigation of meson mass splitting confirms the exponential sup-

pression of symmetry breaking effects.

Introduction

The bosonized Lagrangian in the 2D Schwinger model is given by

L =

2∑
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fNmf

[
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√
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where Φf are pseudoscalar fields, µ = e√
2π

is the Schwinger mass, θ the vacuum

angle, c = eγ

2π is a constant with Euler constant γ, mf the fermion mass for

different flavor f , and Nmf
denotes normal-ordering with respect to a mass mf .

In the strong coupling limit for light quarks (e � mf ) we can change the field

variables by diagonalizing Φf
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f Φ
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θ√
8π

δa1 (2)

using the matrices
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)
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)
. (3)

Decoupling the heavy field χ1 which is the η meson and renormal-ordering

following Coleman [2]
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the resulting Lagrangian is that of the sine-Gordon theory with β =
√
2π

Llight =
1

2
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1

2π
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[
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√
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where

M =

(
eγµ1/2

√
m2

1 +m2
2 + 2m1m2 cos θ

)2/3

. (6)

There are three solutions: The soliton (Q = 0, I3 = +1), the antisoliton (Q = 0,

I3 = −1) and the lighter breather of the two breather solutions (Q = 0, I3 = 0)

that correspond to the pions π+, π− and π0 respectively. All three solutions are

the lightest physical states of mass M where M is flavor dependent and the

exponent of 2/3 is due to Nf = 2 [3].

Following Georgi, the massless composite 1/2 dimension operators

Of = ψ∗
f1ψf2, O∗

f = ψ∗
f2ψf1 (7)

of flavor f = 1,2 have opposite charge of the isospin 3rd component,

I3 = +1,−1.Mixing these operators

O±1 = eiθ/2O1 ± e−iθ/2O∗
2 O∗

±1 = e−iθ/2O∗
1 ± eiθ/2O2 (8)

all 2-point correlators vanish except for

〈0|T(O±1(x)O
∗
±1(0))|0〉 = ξµ

2π2
(eκ0 ± e−κ0)

1√
−x2 + iε

(9)

where

κ0 = K0

(
µ
√

−x2 + iε
)

and K0 is a modified Bessel function of the second kind.

While the O+1 operator goes to a conformal operator at long distances, the

O−1 operator goes to zero exponentially, meaning that O−1 disappears while

O1 and O∗
2 in O+1 coalesce.

Degenerate Masses mf

Going further, we will consider the case of stable bound isotriplets in the 2

flavor Schwinger model given by θ = 0. From the standard bosonization rules

and eq.(2) we find the mass term in eq.(5) in leading order

1
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[
cos

√
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]
∝ mf (ψ̄1ψ1 + ψ̄2ψ2 +mixed terms). (10)

The mixed terms disappear and using eq.(7) we find the mass term to be

1

2π
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[
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√
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]
∝ mf (O1 +O2) + h.c (11)

Introducing a flavor degenerate mass term at low energies using eq.(8)

mf (O+1 +O∗
+1) (12)

and from the well known asymptotic behavior of K0 and subsequently κ0 with

long distance behavior

〈0|T(O+1(x)O
∗
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π2
〈0T(O1/2(x)O
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(13)

we find that the mass term may be written as
√
ξ

π
mf

√
µ(O1/2 +O∗

1/2) (14)

implying the relevant mass scale (in the deep IR) is given by Ms = (m2
f µ)

1
3.

Non-Degenerate Masses mf + δm

We now consider non-degenerate massesmf±δmwith an isospin splitting term

δm(O−1 +O∗
−1) (15)

and find the asymptotic behavior
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3
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from which the isospin splitting term is
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and the isospin mass splitting scale is given by

∆M3
s = δm2m
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The overall mass term in the Lagrangian of half dimensional conformal opera-

tors is √
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π
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and knowing from the sine-Gordon solution that Mπ ∝ m
2
3

f
we find the isospin

breaking corrections to leading order in δm
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From the pion operator

Oπ0(x) =
1

2
(ψ1(x)γ5ψ1(x) − ψ2(x)γ5ψ2(x)) (21)

we find the propagator

〈0|T(Oπ0(x)O
∗
π0(0))|0〉 ∝ 〈0|T(O+1(x)O

∗
+1(0))|0〉 (22)

from which it follows that an isosplin splitting can be observed in the neutral

pion propagator.

Numerical Results
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(a) 10% splitting (b) 10% splitting with pairwise subtraction

(c) 80% splitting (d) 80% splitting with pairwise subtraction

Figure 1. Isospin breaking effects for 10% and 80% splitting displayed with and without pairwise subtraction.

Figure 2. Mπ vs. mf for degenerate masses on a fine lattice with N = 32, β = 7.2 and Mπ ∼ 2.008 · m2/3
f

[4].
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