Isospin Breaking Effects in the 2-Flavor Schwinger Model

Nuha Chreim, Christian Hölbling, Niklas Pielmeier*, Lukas Varnhorst

Abstract

The automatic fine-tuning of isospin breaking effects by conformal coalescence found by Howard Georgi [1] in the 2-flavor Schwinger model is studied. Numerical investigation of meson mass splitting confirms the exponential suppression of symmetry breaking effects.

Introduction

The bosonized Lagrangian in the 2D Schwinger model is given by

$$\mathcal{L} = \sum_{f=1}^{2} \frac{1}{2} (\partial_{\mu} \Phi^{f})^{2} - \frac{\mu^{2}}{4} \left(\sum_{f=1}^{2} \Phi^{f} + \frac{\theta}{\sqrt{4\pi}} \right)^{2} + \sum_{f=1}^{2} cm_{f}^{2} N_{m_{f}} \left[\cos \sqrt{4\pi} \Phi^{f} \right] + const \quad (1)$$

where Φ^{f} are pseudoscalar fields, $\mu = \frac{e}{\sqrt{2\pi}}$ is the Schwinger mass, θ the vacuum angle, $c = \frac{e^{\gamma}}{2\pi}$ is a constant with Euler constant γ , m_f the fermion mass for different flavor f, and N_{m_f} denotes normal-ordering with respect to a mass m_f .

In the strong coupling limit for light quarks ($e \gg m_f$) we can change the field variables by diagonalizing Φ^{f}

$$\chi^{a} = O_{f}^{a} \Phi^{f} + \frac{\theta}{\sqrt{8\pi}} \delta_{1}^{a}$$
⁽²⁾

using the matrices

$$O_{f}^{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad O_{f}^{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (3)

Decoupling the heavy field χ^1 which is the η meson and renormal-ordering following Coleman [2]

Non-Degenerate Masses $m_f + \delta m$

We now consider non-degenerate masses $m_f \pm \delta m$ with an isospin splitting term

$$\delta m(O_{-1} + O_{-1}^*)$$
 (15)

and find the asymptotic behavior

$$\langle 0|T(O_{-1}(x)O_{-1}^{*}(0))|0\rangle \xrightarrow{x \to \infty} \xi \sqrt{\frac{1}{8\pi}} (m_{f}\mu^{2})^{\frac{1}{3}} e^{-\left(\frac{\mu}{m_{f}}\right)^{\frac{2}{3}}} \langle 0|T(O_{1/2}(x)O_{1/2}^{*}(0))|0\rangle$$
(16)

from which the isospin splitting term is

$$\delta m \sqrt{\xi \sqrt{\frac{1}{8\pi}} (m_f \mu^2)^{\frac{1}{3}} e^{-\left(\frac{\mu}{m_f}\right)^{\frac{2}{3}}}} (O_{1/2} + O_{1/2}^*) \tag{17}$$

and the isospin mass splitting scale is given by

$$\Delta M_{s}^{3} = \delta m^{2} m_{f}^{\frac{1}{3}} \mu^{\frac{2}{3}} e^{-\left(\frac{\mu}{m_{f}}\right)^{\frac{2}{3}}}.$$
(18)

The overall mass term in the Lagrangian of half dimensional conformal operators is

$$\frac{\sqrt{\xi}}{\pi}m_f\sqrt{\mu}\left(1+\delta m\left(\frac{\pi}{2}\right)^{\frac{3}{4}}m_f^{-\frac{5}{6}}\mu^{-\frac{1}{6}}e^{-\frac{1}{2}\left(\frac{\mu}{m_f}\right)^{\frac{2}{3}}}\right)(O_{1/2}+O_{1/2}^*)$$
(19)

and knowing from the sine-Gordon solution that $M_{\pi} \propto m_f^{\frac{4}{3}}$ we find the isospin breaking corrections to leading order in δm

$$M_{\pi} \propto m_{f}^{\frac{2}{3}} \left(1 + \frac{2}{3} \left(\frac{\pi}{2} \right)^{\frac{3}{4}} \frac{\delta m}{m_{f}^{\frac{5}{6}} \mu^{\frac{1}{6}}} e^{-\frac{1}{2} \left(\frac{\mu}{m_{f}} \right)^{\frac{2}{3}}} \right).$$
(20)

From the pion operator

$$N_{m_f}\left[\cos\left(-\frac{\theta}{2}+\sqrt{4\pi}O_f^2\chi^2\right)\right] = \left(\frac{M}{m_f}\right)^{\frac{1}{N_f}}N_M\left[\cos\left(-\frac{\theta}{2}+\sqrt{4\pi}O_f^2\chi^2\right)\right]$$

the resulting Lagrangian is that of the sine-Gordon theory with $\beta = \sqrt{2\pi}$

$$\mathcal{L}^{light} = \frac{1}{2} (\partial_{\mu} \chi^2)^2 + \frac{1}{2\pi} M^2 N_M \left[\cos \sqrt{2\pi} \chi^2 \right]$$

where

$$\mathbf{M} = \left(\mathbf{e}^{\gamma} \mu^{1/2} \sqrt{m_1^2 + m_2^2 + 2m_1 m_2 \cos \theta}\right)^{2/3}.$$
 (6)

There are three solutions: The soliton (Q = 0, $I_3 = +1$), the antisoliton (Q = 0, $I_3 = -1$) and the lighter breather of the two breather solutions (Q = 0, $I_3 = 0$) that correspond to the pions π^+, π^- and π^0 respectively. All three solutions are the lightest physical states of mass M where M is flavor dependent and the exponent of 2/3 is due to $N_f = 2$ [3].

Following Georgi, the massless composite 1/2 dimension operators

$$O_f = \psi_{f1}^* \psi_{f2}, \quad O_f^* = \psi_{f2}^* \psi_{f1}$$
 (7)

of flavor f = 1, 2 have opposite charge of the isospin 3rd component, $I_3 = +1, -1$. Mixing these operators

$$O_{\pm 1} = e^{i\theta/2}O_1 \pm e^{-i\theta/2}O_2^*$$
 $O_{\pm 1}^* = e^{-i\theta/2}O_1^* \pm e^{i\theta/2}O_2$ (8)

all 2-point correlators vanish except for

$$\langle \mathbf{0} | T(O_{\pm 1}(\mathbf{x})O_{\pm 1}^*(\mathbf{0})) | \mathbf{0} \rangle = \frac{\xi\mu}{2\pi^2} (\mathbf{e}^{\kappa_0} \pm \mathbf{e}^{-\kappa_0}) \frac{1}{\sqrt{-\mathbf{x}^2 + i\varepsilon}}$$

where

$$\kappa_{0} = K_{0} \left(\mu \sqrt{-x^{2} + i\varepsilon} \right)$$

and K_0 is a modified Bessel function of the second kind.

While the O_{+1} operator goes to a conformal operator at long distances, the O_{-1} operator goes to zero exponentially, meaning that O_{-1} disappears while O_1 and O_2^* in O_{+1} coalesce.

$$O_{\pi^0}(\mathbf{x}) = \frac{1}{2} (\overline{\psi}_1(\mathbf{x}) \gamma_5 \psi_1(\mathbf{x}) - \overline{\psi}_2(\mathbf{x}) \gamma_5 \psi_2(\mathbf{x}))$$
(21)

we find the propagator

(4)

(9)

-4

-2.1

$$\langle 0|T(O_{\pi^0}(x)O_{\pi^0}^*(0))|0\rangle \propto \langle 0|T(O_{+1}(x)O_{+1}^*(0))|0\rangle$$
 (22)

from which it follows that an isosplin splitting can be observed in the neutral (5) pion propagator.

Degenerate Masses m_f

Going further, we will consider the case of stable bound isotriplets in the 2 flavor Schwinger model given by $\theta = 0$. From the standard bosonization rules and eq.(2) we find the mass term in eq.(5) in leading order

$$\frac{1}{2\pi}M^2N_M\left[\cos\sqrt{2\pi}\chi^2\right] \propto m_f(\bar{\psi}_1\psi_1 + \bar{\psi}_2\psi_2 + \text{mixed terms}). \tag{10}$$

The mixed terms disappear and using eq.(7) we find the mass term to be

$$\frac{1}{2\pi}M^2N_M\left[\cos\sqrt{2\pi}\chi^2\right] \propto m_f(O_1+O_2) + h.c \tag{11}$$

Introducing a flavor degenerate mass term at low energies using eq.(8)

$$m_f(O_{+1} + O_{+1}^*)$$
 (12)

and from the well known asymptotic behavior of K_0 and subsequently κ_0 with long distance behavior

$$\langle \mathbf{0}|T(O_{+1}(x)O_{+1}^{*}(\mathbf{0}))|\mathbf{0}\rangle \xrightarrow{x \to \infty} \frac{\xi\mu}{\pi^{2}} \langle \mathbf{0}T(O_{1/2}(x)O_{1/2}^{*}(\mathbf{0}))|\mathbf{0}\rangle = \frac{\xi\mu}{\pi^{2}} \frac{1}{\sqrt{-x^{2}+i\varepsilon}}$$
(13)

we find that the mass term may be written as

$$\frac{\sqrt{\xi}}{\pi} m_f \sqrt{\mu} (O_{1/2} + O_{1/2}^*)$$
 (14)

implying the relevant mass scale (in the deep IR) is given by $M_s = (m_f^2 \mu)^{\frac{1}{3}}$.

(c) 80% splitting

 $-\frac{1}{2}($

-1.5

 $\frac{\mu}{m_f}$

-1.8

analytic

-1.2

 $\delta m/m_{f}^{5/6} = 0.636$

-0.9

(d) 80% splitting with pairwise subtraction

-0.24

-0.21 -0.18

 $-\frac{1}{2}\left(\begin{array}{c} \mu\\ \overline{m_f} \end{array}\right)$

analytic

 $-\delta m/m_{F}^{5/6}$:

-0.15

= 0.636

-0.12

Figure 1. Isospin breaking effects for 10% and 80% splitting displayed with and without pairwise subtraction.

-0.2

-0.4

-0.27

Figure 2. M_{π} vs. m_f for degenerate masses on a fine lattice with $N = 32, \beta = 7.2$ and $M_{\pi} \sim 2.008 \cdot m_f^{2/3}$ [4].

References

- [1] H.Georgi. arXiv:2007.15965
- [2] S.Coleman. ANNALS OF PHYSICS 101, 239-267 (1976)
- [3] M. Sadzikowski and P. Wegrzyn. arXiv:hep-ph/9605242
- [4] C.Gattringer, I.Hip, C.B.Lang. arXiv:hep-lat/9909025
- * Corresponding talk on tue 09.08. 4:30 PM in HS5 (CP1-HSZ)