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Introduction

We simulate lattice QED in an external magnetic field using
the methods developed for lattice QCD (RHMC) to study non-
perturbative effects, in particular, chiral symmetry breaking. (See
my talk at Lattice 2021.)

We restrict ourselves to considering a constant (in space and
time) magnetic field B in the z (3) direction.

Classically electrons in a magnetic field traverse helical orbits
around magnetic field lines. The motion parallel to the magnetic
field is free while that orthogonal to the magnetic field is bound
(circular).

Quantum mechanics restricts the motion perpendicular to the
magnetic field to a discrete set of transverse energy levels – the
Landau levels.

As B increases the radii of such orbits decreases and their
spacing increases until all electrons occupy the lowest level, ef-
fectively leading to an effective reduction from 3 + 1 to 1 + 1
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dimensions.

Without external fields QED has a U(1) × U(1) chiral sym-
metry despite the fact that U(1)axial is anomalous, because
4-dimensional QED does not have instantons.

It is unclear whether the addition of an external magnetic field
breaks this symmetry explicitly.

(Free electrons in an external magnetic field preserve chiral
symmetry.)

Approximate calculations using Schwinger-Dyson equations pre-
dict that QED in an external magnetic field breaks chiral sym-
metry giving the electrons a dynamical mass ∝

√
|eB| and a

chiral condensate ∝ |eB|3/2 [see for example the review article
of Miransky and Shovkovy and references].

We present preliminary evidence that QED in an external mag-
netic field does exhibit such dynamical chiral symmetry break-
ing, based on our lattice QED simulations.
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Simulations and Results
Our first QED simulations were performed on 364 lattices with
m = 0.1 andm = 0.2 with α = 1/137, for a set ofB values in
the range 0 ≤ |eB| ≤ 2π × 140/362 = 0.6787..., which cov-
ers the range over which we can expect reasonable agreement
with continuum results.
At eachm andB we ran for 12500 trajectories storing a config-
uration every 100 trajectories for further analysis.
The expected value of the dynamical electron mass at α =
1/137 is much smaller than the smallest lattice electron mass
we are able to simulate:

mdynamical ∼ 10−35
√
2|eB|

and thus its influence on ⟨ψ̄ψ⟩ will be too small to measure.
We are therefore simulating at a stronger coupling α = 1/5,
which is still in the range where the eB = 0 theory is expected
to be perturbative. Here, we expect:

mdynamical ∼ 10−4
√
2|eB|

4



which should be manageable.

First we consider eB = 0 where chiral symmetry should be
unbroken for m → 0, ⟨ψ̄ψ⟩ ∝ mΛ2 up to log terms. This
means that the chiral condensate is controlled by the ultra-violet
and should be insensitive to the finite lattice-size. So we should
get good results, even ifmL is not much greater than 1 as would
normally be required.

Figure 1 shows the chiral condensate at α = 1/5, eB = 0 for
a range of mass values 0.001 ≤ m ≤ 0.2 on a 364 lattice.
At m = 0.001 we also include the results from a 484 lattice.
As expected, there is almost no lattice size dependence. The
condensate does appear to vanish in the m → 0 limit.
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Figure 1: ⟨ψ̄ψ⟩ as a function of mass at eB = 0, showing lattice size depen-
dence.
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Next we consider eB ̸= 0 in particular we choose eB = 2π ×
100/362 = 0.4848..., relatively large, but not too close to 0.63,
much above which the lattice is not expected to give reliable
results.

Here we expect chiral symmetry to be broken and ⟨ψ̄ψ⟩ to re-
main finite as m → 0. When this happens, the chiral conden-
sate should be dominated by the infrared or the dynamical mass
scale and be sensitive to the lattice size. However, since the
electrons are restricted to the lowest Landau level, this already
restricts their domain in the x, y plane so the size sensitivity only
applies to z and t directions. Thus we fix the lattice extent in the
x and y directions, and measure the finite size dependence on
that in the z and t directions.

Figure 2 shows the mass dependence of ⟨ψ̄ψ⟩ on the input
electron mass m on 364, 362 × 642 and 362 × 962 lattices.
We note that for m ≥ 0.025 a 364 lattice is adequate. For
m = 0.0125, while a 364 lattice shows significant finite size
effects, a 362×642 lattice is probably adequate. Atm = 0.005
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a 364 lattice shows large finite size effects, a 362 × 642 lattice
shows small but significant finite size effects while a 362 × 962

lattice is probably adequate. For m = 0.001 a 364 lattice has
very large finite size effects, and we suspect that a 362 × 642

also has large finite size effects. Simulations on larger lattices
(362 × 962 or 362 × 1282) are needed.

Even without any larger lattice simulations at m = 0.001, the
current results strongly suggest that the presence of a relatively
large external magnetic field does produce a non-zero chiral
condensate, which breaks the chiral symmetry at m → 0.
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Figure 2: ⟨ψ̄ψ⟩ as a function of mass at eB = 2π × 100/362,showing depen-
dence on lattice size in the z and t directions.
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The size of the m = 0 condensate appears to be at least an
order of magnitude greater than is predicted by the Schwinger-
Dyson approach. However, we have ignored the effects of renor-
malization. While this was valid at the physical fine structure
constant α ≈ 1/137 and m = 0.1, 0.2 where these effects are
small, it is not valid at αlattice = 1/5.

The improved rainbow approximation used by Gusynin-Miransky-
Shovkovy in their Schwinger-Dyson calculations relies on selec-
tion of a gauge where loop corrections to the electron photon
vertex are suppressed by positive powers of α. This implies
that as α is increased, the approximation of the vertex by its
bare value becomes less valid. We suggest that α = 1/5 is too
large for the improved rainbow approximation to be valid.

Finally one needs to know how large an effect the staggered
fermion symmetry breaking has on these lattice results.
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Discussion and Conclusions

• We simulate lattice QED in a constant (in time and space) ex-
ternal magnetic field B using methods (RHMC) developed for
lattice QCD.

• Approximate calculations using Schwinger-Dyson methods in-
dicate that the magnetic field ‘catalyses’ chiral symmetry break-
ing in the m → 0 limit giving the electron a dynamical mass
∝

√
eB and a chiral condensate ∝ (eB)3/2.

• Our lattice simulations, using α = 1/5 to enhance the sig-
nal, appear to indicate that dynamical chiral symmetry breaking
does occur for our chosen eB = 0.4848....

• However, to put this observation on firmer ground, we will need
to extend our simulations at the lowest mass m = 0.001 to
larger lattices. Because the magnetic field restricts the elec-
tron’s motion in the plane orthogonal to the magnetic field, we
need to only increase the lattice extents in the direction of the
magnetic field and the (euclidean) time direction. (Planned sim-
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ulations are on 362 × 962 and/or 362 × 1282 lattices.)

• Our simulations indicate condensates at least an order of mag-
nitude larger than do Schwinger-Dyson methods.

• We plan to make other measurements on stored configurations.
In particular, we will measure the effects of QED in an external
magnetic field on the coulomb field of a static charged particle
placed in said magnetic field.

• We should redo these simulations at other values of eB to check
that the condensate does scale like |eB|3/2.

• Since it is possible that the chiral symmetry breaking for QED
in an external magnetic field is explicit, we are contemplating
simulating QED with more than 1 electron ‘flavour’, since the
flavour chiral symmetry is not broken explicitly by the external
magnetic field. Hence, any flavour chiral symmetry breaking
must be spontaneous, with its associated Goldstone bosons.

• We contemplate using lattice methods to study the physics of
QED in an external electric field. However, the action of QED in
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an external electric field is complex (Sauter-Schwinger effect),
so such studies will be less straight-forward.

These simulations were performed on the Bebop Cluster at
ANL, Cori at NERSC using an ERCAP(DOE) allocation, Perlmutter
at NERSC using early-user access and using XSEDE(NSF) allo-
cations on Expanse at UCSD, Bridges-2 at PSC and Stampede-2
at TACC.

One of us (DKS) would like to thank G. T. Bodwin for helpful
discussions, while JBK would like to acknowledge conversations
with A. Shovkovy and V. Yakimenko.
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Appendix: Lattice QED in an external Magnetic Field

We simulate using the non-compact gauge action

S(A) =
β

2

∑
n,µ<ν[Aν(n+µ̂)−Aν(n)−Aµ(n+ ν̂)+Aµ(n)]2

where n is summed over the lattice sites and µ and ν run from 1
to 4 subject to the restriction. β = 1/e2. The functional integral to
calculate the expectation value for an observable O(A) is then

⟨O⟩ =
1

Z

∫ ∞

−∞
Πn,µdAµ(n)e

−S(A)[detM(A+Aext)]
1/8O(A)

where M = M†M and M is the staggered fermion action in the
presence of the dynamic photon field A and external photon field
Aext describing the magnetic fieldB (or rather eB). M is defined
by

M(A+Aext) =
∑

µDµ(A+Aext) +m
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where the operator Dµ is defined by

[Dµ(A+Aext)ψ](n) =
1

2
ηµ(n){ei(Aµ(n)+Aext,µ(n))ψ(n+ µ̂)

− e−i(Aµ(n−µ̂)+Aext,µ(n−µ̂))ψ(n− µ̂)}
and ηµ are the staggered phases. Note that this treatment of the
gauge-field–fermion interactions is compact and so has period 2π
in the gauge fields.

We implement the RHMC simulation method of Clark and
Kennedy, using a (12, 12) [(15, 15)] rational approximation to M−1/8

and (20, 20) [(25, 25)] rational approximations M±1/16. To ac-
count for the range of normal modes of the non-compact gauge
action we vary the trajectory lengths τ over the range,

π

2
√
β

≤ τ ≤
4π√

2β(4 −
∑
µ cos(2π/Nµ))

,

of the periods of the modes of this gauge action.
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Aext are chosen in the symmetric gauge as

Aext,1(i, j, k, l) = −
eB

2
(j − 1) i ̸= N1

Aext,1(i, j, k, l) = −
eB

2
(N1 + 1) (j − 1) i = N1

Aext,2(i, j, k, l) = +
eB

2
(i− 1) j ̸= N2

Aext,2(i, j, k, l) = +
eB

2
(N2 + 1) (i− 1) j = N2

while Aext,3(n) = Aext,4(n) = 0. In practice we subtract the
average values of Aext, µ from these definitions. This choice
produces a magnetic field eB in the +z direction on every 1, 2
plaquette except that with i = N1, j = N2, which has the
magnetic field eB(1 − N1N2). Because of the compact nature
of the interaction, requiring eBN1N2 = 2πn for some integer
n = 0, 1, ......N1N2/2 makes the value of this plaquette indistin-
guishable from eB. Hence eB = 2πn/(N1N2) lies in the interval
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[0, π].
One of the observables we calculate is the electron contribu-

tion to the effective gauge action per site −1
8V trace[ln(M)]. For

ln(M) we use a (30, 30) rational approximation to the logarithm.
Here we use the Chebyshev method of Kelisky and Rivlin. While
this has worse errors than a Remez approach, it preserves some
of the properties of the logarithm itself, and is applicable on the
whole complex plane cut along the negative real axis.
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