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TWISTED BOUNDARY CONDITIONS AND GAUGE INVARIANCE 2

Our particular set-up has the following considerations:

SU(N) YM theory defined on an asymmetric torus of sizes [, =sl, [, =1, =I/N and l; = [. The

number of colours N is taken as the nth integer in the Fibonacci sequence: N = F, .

Twisted boundary conditions (TBC) on the three-torus with flux m = (0,0,m), where m is taken

coprime withNasm=F, ,.



TWISTED BOUNDARY CONDITIONS AND GAUGE INVARIANCE 3

The solutions can be interpreted as tunneling events interpolating between two pure gauge
configurations characterised by its spatial Polyakov loop at x, = £ oo, defined as:

1 ¢
P.(x), X) = NTr (P exp {—i j dx; A (xp, 7)} I i)
0

Impose TBC to support fractional topological charge:

N 4 F

n

O

= Jd4xTr (Fw(x)FW(x)) = v
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With TBC, colour and spatial DOF get entangled

and the torus periods become effectively P

enlarged in the twisted planes by a factor of N. NI :
[arXiv:1406.5655] = [ -

The choice of m and N aims at avoiding large N

phase transitions that would lead to Z, X Z,
symmetry breaking.

[arXiv:1610.07972]
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We present a new type of SU(N) instanton configurations with fractional topological charge
0 = 1/N compatible with our choice of TBC.

First, we have looked at action density profiles obtained by integrating the 4-dimensional density

l, y
Ns,(x,) = HJ dx, | Ns(x) Ns,,(x.x) = [ |1 J dx, | Ns(x)
p#u =V ptpp ~ Y
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We see very little dependence on the lattice spacing, indicating rather small lattice artefacts even
for our smaller lattices. Discretization effects are controlled by LN.
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In order to test self-duality, we have looked separately at the different components of the electric
and magnetic energies by computing the spatial integral of ReTr(F/fy), with ¢ and v fixed.
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We use P (x) to denote (1/N times) the trace of the Polyakov loop winding the torus once in direction

u, and will parameterize this quantity in terms of its modulus and phase as:

[

lTr(P exp{ — 1 deMAﬂ(x)} Qﬂ(x)) = |P,(x)| ' Pu¥)

P (x) =
H N 0
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We will denote W(r) the Wilson loop defined as

N

WC(r) — iTr(P exp{ — iJ dxﬂAﬂ(X)} ) — ‘WC(F) ‘ eiéc(r)
C
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We have obtained numerical instanton-like solutions for gauge group SU(N) and
Q = 1/N. They have been obtained on a 4-torus with TBC and considering the number of colours

and the magnetic flux N and m as the nth and nth — 2 integers in the

The resulting configurations scale in the large N limit in agreement with the R X T Hamiltonian limit,
representing events. Action densities become independent of the twisted

coordinates (x;, x,) and are localized in x,

The scaling of various other physical quantities in the large N limit has been analyzed, including
(showing how the fractional instantons interpolates between two flat connections) and

(which is non-trivial and at large distance carries a Z,, flux)

QUESTIONS?
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The gauge fields satisfy TBC, fixing periodicity as A,(x + e ;) = I';A/(x, Y)F}L, and a Fourier

expansion based on this boundary conditions is the following:

—> 1 1 — DX T —
Afxp, X)) = 7 ZAi(x09 ple’’ 1 (p)

In this expression, momenta is quantized in all three spatial directions as p; = 2zn./[ and the prime

in the sum indicates the exclusion of the cases where both n; and n, are equal to zero mod N.
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We can contract solutions with constant curvature that become self-dual for certain values of the
torus aspect ratios, an we can think our solutions as small perturbations of this construction.

With our selection of TBC, this solutions become self-dual for the following torus aspect ratios:
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I, =0.234
l, = 2.001,
l, = 1.001,
l, = 0.501,
l, = 0.401,
l, = 0.35,
l, = 0.301,
l, = 0.25l,
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