

SU(N) FRACTIONAL INSTANTONS

J.L. DASILVA GOLÁN - M. GARCÍA PÉREZ August 9 2022, Lattice 22

TWISTED BOUNDARY CONDITIONS AND GAUGE INVARIANCE

YANG-MILLS FORMULATION ON $\mathbf{R} \times \mathbf{T}^3$ with tbc

Our particular set-up has the following considerations:

- number of colours N is taken as the *nth* integer in the Fibonacci sequence: $N = F_n$.
- coprime with N as $m = F_{n-2}$.

Gauge Fixing is used as $A_0 = 0...$

TWISTED BOUNDARY CONDITIONS $A_i(x + l_j \hat{e}_j) = \Gamma_j A_i(x_0, \vec{x}) \Gamma_j^{\dagger}$ **CONSISTENCY RELATIONS** $\Gamma_1 \Gamma_2 = e^{i \frac{2\pi m}{N}} \Gamma_2 \Gamma_1 \text{ and } \Gamma_3 \Gamma_i = \Gamma_i \Gamma_3 \quad i = 1, 2$

FIBONACCI NUMBERS

SU(N) YM theory defined on an asymmetric torus of sizes $l_0 = sl$, $l_1 = l_2 = l/N$ and $l_3 = l$. The

Twisted boundary conditions (TBC) on the three-torus with flux $\vec{m} = (0,0,m)$, where m is taken

....but is not complete, allowing....

SINGULAR GAUGE TRANSFORMATIONS: $\Omega_{\vec{s}}(\vec{x} + l_i \hat{e}_i) = e^{i\frac{2\pi s_i}{N}} \Gamma_i \Omega_{\vec{s}}(\vec{x}) \Gamma_i^{\dagger} s_i \in \mathbb{Z}_{\mathbb{N}}$ THE WAVE FUNCTIONS TRANSFORM AS $\Psi_{\overrightarrow{e}}\left([\Omega_{\overrightarrow{s}}]A\right) = e^{i\frac{2\pi e \cdot s}{N}}\Psi_{\overrightarrow{e}}(A)$

HOLONOMIES

configurations characterised by its spatial Polyakov loop at $x_0 = \pm \infty$, defined as:

$$P_i(x_0, \vec{x}) \equiv \frac{1}{N} \operatorname{Tr} \left(\operatorname{Pexp} \left\{ -i \int_0^{l_i} dx_i A_i(x_0, \vec{x}) \right\} \right\}$$

TOPOLOGICAL CHARGE

Impose TBC to support fractional topological charge:

$$Q = \frac{1}{16\pi^2} \int d^4 x \operatorname{Tr} \left(F_{\mu\nu}(x) \widetilde{F}_{\mu\nu}(x) \right) = \nu - \frac{\overline{k}}{4\pi^2}$$

The solutions can be interpreted as tunneling events interpolating between two pure gauge

WHY WE TAKE THIS GEOMETRY?

With TBC, colour and spatial DOF get entangled and the torus periods become effectively enlarged in the twisted planes by a factor of N.

THE EFFECTIVE LARGE N DYNAMICS IS THE ONE OF A SYMMETRIC TORUS OF SIZE l^4

[arXiv:1406.5655]

'HY THE FIBONACCI SEQUENCE?

The choice of *m* and N aims at avoiding large N phase transitions that would lead to $\mathbf{Z}_N \times \mathbf{Z}_N$ symmetry breaking.

THE OPTIMAL SEQUENCE TO APPROACH THE LARGE N LIMIT WITHOUT INSTABILITIES IS TO TAKE N AND m along the FIBONACCI SEQUENCE WITH $N = F_n$ and $m = F_{n-2}$

[arXiv:1610.07972]

DENSITY PROFILES

Q = 1/N compatible with our choice of TBC.

First, we have looked at action density profiles obtained by integrating the 4-dimensional density

$$Ns_{\mu}(x_{\mu}) \equiv \left(\prod_{\rho \neq \mu} \int_{0}^{l_{\rho}} dx_{\rho}\right) Ns(x)$$

We present a new type of SU(N) instanton configurations with fractional topological charge

$$Ns_{\mu\nu}(x_{\mu}, x_{\nu}) \equiv \left(\prod_{\rho \neq \mu, \nu} \int_{0}^{l_{\rho}} dx_{\rho}\right) Ns(x)$$

IN THE FIBONACCI FLAT CONSTRUCTION: $l^2s_{12}(x_1,x_2)/N=1$

0.0 *x*₀

for our smaller lattices. Discretization effects are controlled by LN.

We see very little dependence on the lattice spacing, indicating rather small lattice artefacts even

		WIDT			
N	т	\overline{m}	L	w ₁	w_2
3	1	1	6	0.268284	0.268456
5	2	2	12	0.283232	0.289695
8	3	-3	6	0.279391	0.285402
13	5	5	4	0.286707	0.287152
21	8	8	2	0.281166	0.286412

N	т	\overline{m}	L	w_1	W_2
3	1	1	6	0.268284	0.268456
5	2	2	12	0.283232	0.289695
8	3	-3	6	0.279391	0.285402
13	5	5	4	0.286707	0.287152
21	8	8	2	0.281166	0.286412

1.0

11

SELF-DUALITY

and magnetic energies by computing the spatial integral of ReTr($F_{\mu\nu}^2$), with μ and ν fixed.

In order to test self-duality, we have looked separately at the different components of the electric

(0,1) (0,2) (0,3) (1,2) (1,3)(2,3)

POLYAKOV LOOPS

We use $P_{\mu}(x)$ to denote (1/N times) the trace of the Polyakov loop winding the torus once in direction μ , and will parameterize this quantity in terms of its modulus and phase as:

$$P_{\mu}(x) = \frac{1}{N} \operatorname{Tr} \left(\operatorname{P} \exp \left\{ -i \int_{0}^{l_{\mu}} dx_{\mu} A_{\mu}(x) \right\} \Omega_{\mu}(x) \right) \equiv$$

 $\equiv |P_{\mu}(x)| e^{i\phi_{\mu}(x)}$

DUE TO TBC, POLYAKOV LOOPS SATISFY: $P_{\mu}(x + l_{\nu}\hat{e}_{\nu}) = e^{i\frac{2\pi n_{\mu\nu}}{N}}P_{\mu}(x)$

The value of $|P_1|$ remains everywhere very small and tends to zero at $x_0 \rightarrow \pm \infty$

٦

WILSON LOOPS

We will denote $W_C(r)$ the Wilson loop defined as

$$W_C(r) = \frac{1}{N} \operatorname{Tr} \left(P \exp \left\{ -i \int_C dx_\mu A_\mu(x) \right\} \right) \equiv |W_C(r)| e^{i\delta_C(r)}$$

 $C \land T \times R$ square loop with T = R = r in the 03 plane

Wilson loop around the fractional instanton encloses a \mathbf{Z}_N flux

- and the magnetic flux N and m as the *nth* and *nth* -2 integers in the Fibonacci sequence.
- coordinates (x_1, x_2) and are localized in x_0
- Wilson loop operators (which is non-trivial and at large distance carries a Z_N flux)

THANK YOU FOR YOUR ATTENTION **QUESTIONS?**

We have obtained numerical instanton-like solutions for gauge group SU(N) and fractional topological charge Q = 1/N. They have been obtained on a 4-torus with TBC and considering the number of colours

The resulting configurations scale in the large N limit in agreement with the ${f R} imes {f T}^3$ Hamiltonian limit, representing vacuum-to-vacuum tunneling events. Action densities become independent of the twisted

The scaling of various other physical quantities in the large N limit has been analyzed, including Polyakov loop operators (showing how the fractional instantons interpolates between two flat connections) and

BACKUP

BACKUP SLIDES

PERTURBATIVE EXPANSIO

expansion based on this boundary conditions is the following:

$$A_i(x_0, \overrightarrow{x}) = \frac{1}{\sqrt{l_1 l_2 l_3}} \sum_{\overrightarrow{p}} \hat{A}_i(x_0, \overrightarrow{p}) e^{i\overrightarrow{p}\cdot\overrightarrow{x}} \widehat{\Gamma}(\overrightarrow{p})$$

The 3-dimensional box has the same effective size *l* in all three spatial directions.

The gauge fields satisfy TBC, fixing periodicity as $A_i(x + l_j \hat{e}_j) = \Gamma_j A_i(x_0, \vec{x}) \Gamma_j^{\dagger}$, and a Fourier

THE NEW GENERATORS OF THE LIE ALGEBRA: $\widehat{\Gamma}(\overrightarrow{p}) = \frac{1}{\sqrt{2N}} e^{i\alpha(\overrightarrow{p})} \Gamma_1^{-\overline{m}n_2} \Gamma_2^{\overline{m}n_1}$

In this expression, momenta is quantized in all three spatial directions as $p_i = 2\pi n_i/l$ and the prime in the sum indicates the exclusion of the cases where both n_1 and n_2 are equal to zero mod N.

SOLUTION ON T⁴

We can contract solutions with constant curvature that become self-dual for certain values of the torus aspect ratios, an we can think our solutions as small perturbations of this construction.

With our selection of TBC, this solutions become self-dual for the following torus aspect ratios:

$$l_0 l_3 = \frac{F_{n-m+1} F_{n-m}}{F_n^2 F_m F_{m-1}} \to l_0 l_3 = \frac{\varphi^{1-2m}}{F_m F_{m-1}} \text{ for } [n-m \to \infty]$$

WE HAVE SET SHO
$$l_1 =$$

THE GAUGE FIELD AND FIELD STRENGTH ARE:

$$A_{\mu}(x) = \pi \frac{\Delta_{\nu\mu}}{Nl_{\mu}l_{\nu}} x_{\nu} T \text{ and } F_{\mu\nu}(x) = 2\pi \frac{\Delta_{\mu\nu}}{Nl_{\mu}l_{\nu}}$$

RT DIRECTIONS TO SCALE AS $l_2 = 1/F_n$

BACKUP: FLAT SOLUTION

SOLUTION ON \mathbf{T}^4 and deformations

