ift UAM-CSIC

## 

## SU(N) FRACTIONAL INSTANTONS

## J.L. DASILVA GOLÁN - M. GARCÍA PÉREZ

August 9 2022, Lattice 22

## YANG-MILLS FORMULATION ON $\mathrm{R} \times \mathrm{T}^{3}$ WITH TBC

Our particular set-up has the following considerations:

- $\operatorname{SU}(\mathrm{N}) \mathrm{YM}$ theory defined on an asymmetric torus of sizes $l_{0}=s l, l_{1}=l_{2}=l / N$ and $l_{3}=l$. The number of colours N is taken as the $n t h$ integer in the Fibonacci sequence: $N=F_{n}$.
- Twisted boundary conditions (TBC) on the three-torus with flux $\vec{m}=(0,0, m)$, where $m$ is taken coprime with N as $m=F_{n-2}$.

Gauge Fixing is used as $A_{0}=0 \ldots$
TWISTED BOUNDARY CONDITIONS

$$
A_{i}\left(x+l_{j} \widehat{e}_{j}\right)=\Gamma_{j} A_{i}\left(x_{0}, \vec{x}\right) \Gamma_{j}^{\dagger}
$$

CONSISTENCY RELATIONS
$\Gamma_{1} \Gamma_{2}=e^{i \frac{2 \pi m}{N}} \Gamma_{2} \Gamma_{1}$ and $\Gamma_{3} \Gamma_{i}=\Gamma_{i} \Gamma_{3} \quad i=1,2$
...but is not complete, allowing...
SINGULAR GAUCE TRANSFORMATIONS:
$\Omega_{\bar{s}}\left(\vec{x}+l_{i} \hat{e}_{i}\right)=e^{\frac{2 \pi \pi_{i}}{N}} \Gamma_{i} \Omega_{\bar{s}}(\vec{x}) \Gamma_{i}^{i}, s_{i} \in \mathbf{Z}_{N}$
THE WAVE FUNCTIONS TRANSFORM AS

$$
\Psi_{\vec{c}}\left(\left[\Omega_{-}\right] A\right)=e^{i \frac{2 \pi \bar{c} \cdot \vec{s}}{N}} \Psi_{-}(A)
$$

## HOLONOMIES

The solutions can be interpreted as tunneling events interpolating between two pure gauge configurations characterised by its spatial Polyakov loop at $x_{0}= \pm \infty$, defined as:

$$
P_{i}\left(x_{0}, \vec{x}\right) \equiv \frac{1}{N} \operatorname{Tr}\left(\mathrm{P} \exp \left\{-i \int_{0}^{l_{i}} d x_{i} A_{i}\left(x_{0}, \vec{x}\right)\right\} \Gamma_{i}\right)
$$



## TOPOLOGICAL CHARGE

Impose TBC to support fractional topological charge:

## FIBONACCI NUMBERS

$$
Q=\frac{1}{16 \pi^{2}} \int d^{4} x \operatorname{Tr}\left(F_{\mu \nu}(x) \widetilde{F}_{\mu \nu}(x)\right)=\nu-\frac{\vec{k} \cdot \vec{m}}{N}=(-1)^{n+1} F_{n-4}-\frac{(-1)^{n+1} F_{n-2} \times F_{n-2}}{F_{n}}=\frac{1}{F_{n}}
$$

## WHY WE TAKE THIS GEOMETRY?

With TBC, colour and spatial DOF get entangled and the torus periods become effectively enlarged in the twisted planes by a factor of N .

THE EFFECTIVE LARGE N DYNAMICS IS THE ONE OF A SYMMETRIC TORUS OF SIZE $l^{4}$
[arXiv:1406.5655]


## WHY THE FIBONACCI SEQUENCE?

The choice of $m$ and $\mathbf{N}$ aims at avoiding large $\mathbf{N}$ phase transitions that would lead to $\mathbf{Z}_{N} \times \mathbf{Z}_{N}$ symmetry breaking.

## THE OPTIMAL SEQUENCE TO APPROACH THE LARGE N LIMIT WITHOUT INSTABLLITIES IS TO TAKE N AND $m$ ALONG THE FBONACCI SEOUENCE WITH $N=F_{n}$ AND $m=F_{n-2}$

## DENSITY PROFILES

We present a new type of $\operatorname{SU}(\mathrm{N})$ instanton configurations with fractional topological charge $Q=1 / N$ compatible with our choice of TBC.


## IN THE CONTINUUM:

SELF DUAL COUVIGURATIONS DEFINED ON A 4 -IIMENSIONAL torus sl $\times(l / N)^{2} \times l$

First, we have looked at action density profiles obtained by integrating the 4-dimensional density

$$
N s_{\mu}\left(x_{\mu}\right) \equiv\left(\prod_{\rho \neq \mu} \int_{0}^{l_{\rho}} d x_{\rho}\right) N s(x)
$$

$$
N s_{\mu \nu}\left(x_{\mu}, x_{\nu}\right) \equiv\left(\prod_{\rho \neq \mu, \nu} \int_{0}^{l_{\rho}} d x_{\rho}\right) N s(x)
$$



IN THE FIBONACCI FLAT CONSTRUCTION: $l^{2} s_{12}\left(x_{1}, x_{2}\right) / N=1$


$N=5$



$$
N=8
$$




N=3
N=3

- $L=6$. $L=8$ • $L=10$ • $L=20$


We see very little dependence on the lattice spacing, indicating rather small lattice artefacts even for our smaller lattices. Discretization effects are controlled by $L N$.


## WIDTH AT HALF MAXIMUM

| $N$ | $m$ | $\bar{m}$ | $L$ | $w_{1}$ | $w_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 1 | 6 | 0.268284 | 0.268456 |
| 5 | 2 | 2 | 12 | 0.283232 | 0.289695 |
| 8 | 3 | -3 | 6 | 0.279391 | 0.285402 |
| 13 | 5 | 5 | 4 | 0.286707 | 0.287152 |
| 21 | 8 | 8 | 2 | 0.281166 | 0.286412 |

```
S=2
```



|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WIDIH AT HALF MAXIMUM |  |  |  |  |  |
| $N$ | $m$ | $\bar{m}$ | $L$ | $w_{1}$ | $w_{2}$ |
| 3 | 1 | 1 | 6 | 0.268284 | 0.268456 |
| 5 | 2 | 2 | 12 | 0.283232 | 0.289695 |
| 8 | 3 | -3 | 6 | 0.279391 | 0.285402 |
| 13 | 5 | 5 | 4 | 0.286707 | 0.287152 |
| 21 | 8 | 8 | 2 | 0.281166 | 0.286412 |

## SELF-DUALITY

In order to test self-duality, we have looked separately at the different components of the electric and magnetic energies by computing the spatial integral of $\operatorname{Re} \operatorname{Tr}\left(F_{\mu \nu}^{2}\right)$, with $\mu$ and $\nu$ fixed.




## POLYAKOV LOOPS

We use $P_{\mu}(x)$ to denote ( $1 / N$ times) the trace of the Polyakov loop winding the torus once in direction $\mu$, and will parameterize this quantity in terms of its modulus and phase as:

$$
P_{\mu}(x)=\frac{1}{N} \operatorname{Tr}\left(\mathrm{P} \exp \left\{-i \int_{0}^{l_{\mu}} d x_{\mu} A_{\mu}(x)\right\} \Omega_{\mu}(x)\right) \equiv\left|P_{\mu}(x)\right| e^{i \phi_{\mu}(x)}
$$

> DUE TO TBC, POLYAKOV LOOPS SATSFY:
> $P_{\mu}\left(x+l_{\nu} \hat{e}_{\nu}\right)=e^{i \frac{2 m m_{\mu}}{N}} P_{\mu}(x)$



```
The value of | }\mp@subsup{P}{1}{}|\mathrm{ remains
everywhere very small and
tends to zero at }\mp@subsup{x}{0}{}->\pm
```



DIFFERING BY $2 \pi k / N$

ENERGY DENSITY PROFILE

MODULUS TENDING TO ONE


## WILSON LOOPS

We will denote $W_{C}(r)$ the Wilson loop defined as

$$
W_{C}(r)=\frac{1}{N} \operatorname{Tr}\left(P \exp \left\{-i \int_{C} d x_{\mu} A_{\mu}(x)\right\}\right) \equiv\left|W_{C}(r)\right| e^{i \delta_{C}(r)}
$$

CAT $\times R$ SQUARE LOOP WITH
$T=R=r \mathbb{N}$ THEOS PLANE


- We have obtained numerical instanton-like solutions for gauge group $\operatorname{SU}(\mathrm{N})$ and fractional topological charge $Q=1 / N$. They have been obtained on a 4-torus with TBC and considering the number of colours and the magnetic flux N and $m$ as the $n t h$ and $n t h-2$ integers in the Fibonacci sequence.
- The resulting configurations scale in the large $N$ limit in agreement with the $\mathbf{R} \times \mathbf{T}^{3}$ Hamiltonian limit, representing vacuum-to-vacuum tunneling events. Action densities become independent of the twisted coordinates $\left(x_{1}, x_{2}\right)$ and are localized in $x_{0}$
* The scaling of various other physical quantities in the large N limit has been analyzed, including Polyalkov loop operators (showing how the fractional instantons interpolates between two flat connections) and Wilson lloop operators (which is non-trivial and at large distance carries a $\mathbf{Z}_{N}$ flux)


## THANK YOU FOR YOUR ATTENTION QUESTIONS?

## BACKUP SLIDES

## PERTURBATIVE EXPANSION

The gauge fields satisfy TBC, fixing periodicity as $A_{i}\left(x+l_{j} \widehat{e}_{j}\right)=\Gamma_{j} A_{i}\left(x_{0}, \vec{x}\right) \Gamma_{j}^{\dagger}$, and a Fourier expansion based on this boundary conditions is the following:

$$
A_{i}\left(x_{0}, \vec{x}\right)=\frac{1}{\sqrt{l_{1} l_{2} l_{3}}} \sum_{\vec{p}}^{\prime} \hat{A}_{i}\left(x_{0}, \vec{p}\right) e^{i \vec{p} \cdot \vec{x}} \widehat{\Gamma}(\vec{p})
$$



In this expression, momenta is quantized in all three spatial directions as $p_{i}=2 \pi n_{i} / l$ and the prime in the sum indicates the exclusion of the cases where both $n_{1}$ and $n_{2}$ are equal to zero $\bmod \mathrm{N}$.

## SOLUTION ON T ${ }^{4}$

We can contract solutions with constant curvature that become self-dual for certain values of the torus aspect ratios, an we can think our solutions as small perturbations of this construction.

## DECOMPOSE THE THEORY NTO TWO SECTORS:

$$
\begin{aligned}
N & =N_{1}+N_{2} \\
n_{\mu \nu} & =n_{\mu \nu}^{(1)}+n_{\mu \nu}^{(2)}
\end{aligned}
$$

The gavge fleld and feld strength are:
$A_{\mu}(x)=\pi \frac{\Delta_{\nu \mu}}{N l_{\mu} l_{\nu}} x_{\nu} T$ AND $F_{\mu \nu}(x)=2 \pi \frac{\Delta_{\mu \nu}}{N l_{\mu} l_{\nu}} T$

With our selection of TBC, this solutions become self-dual for the following torus aspect ratios:

$$
l_{0} l_{3}=\frac{F_{n-m+1} F_{n-m}}{F_{n}^{2} F_{m} F_{m-1}} \rightarrow l_{0} l_{3}=\frac{\varphi^{1-2 m}}{F_{m} F_{m-1}} \text { for }[n-m \rightarrow \infty]
$$

WE HAVE SET SHORT DIRECTIONS TO SCALE AS

$$
l_{1}=l_{2}=1 / F_{n}
$$

## SOLUTION ON T ${ }^{4}$ AND DEFORMATIONS



