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Introduction
Sp(N.) gauge theories

Sp(Ne) = {U € SU(N) | Qua’ = U*}v 2= {_01 (ﬂ

> BSM: Attractive Composite Higgs models based on Sp(N.) gauge symmetry.
Bennett et al. 2018; Ferretti and Karateev

» Large-N.: Non-trivial alternative to the SU(N.) and SO(N.) families of gauge groups
Lovelace 1982; ’t Hooft

» SIMP: Strongly Interacting Dark Matter

Hochberg et al. 2015; Kulkarni et al.

» Topological structure of the vacuum?
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1974
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The topological structure of the Sp(V.) vacuum

Solutions with finite action describe semiclassical barrier penetration between different sectors. The ”true”
vacua are linear combinations of Q-vacua
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» We have that Q € w3(Sp(Ne)) = Z.

» We can define N 0
S§=-= /d“xTrFWFW — Ne— /d4ac q(x), A= g2N, 2)
2\ Nc

The 6 dependence in gauge theories has attracted a lot of interest especially at large-Nc.
» The U(1) 4 problem and the Witten-Veneziano formula: topological susceptibility.
't Hooft 1976; Veneziano 1979; Witten 1979
» The strong-CP problem

» 6 dependence of observables like glueballs masses...
Bonanno et al. 2022



Theta dependence in gauge theories

General arguments dictate that the free energy F'(0) should be 27 periodic, even and have a minimum at

6=0.
0+ 2nk
F(0) = inh| — k=0,....N.—1 3
(6) = fominn (“52) - Q
Witten 1980, 1998
In the neighbourhood of § = 0,
1
F(8) — F(0) = 5Xe)“’(l + 5202 +b40% +---) (4)
Bonati et al. 2016
where )
0“F(0
x=220 < [t @) (5)
960%  lo=o

is the topological susceptibility.
» The evaluation of x is difficult on the lattice: UV fluctuations, additive renormalizations

» The gradient flow will allow us to both obtain x and set the scale



The Gradient Flow

The gradient flow By (z, t) is defined by

dB t
Bl l) by Gt 1), Gu®) = D D), D=0+ B -]

where the independent variable ¢ is known as flow time, and By (z, 0) = A, (x).

»> B, (z,t) is a renormalized field, dimensional physical quantities can be computed at ¢t > 0. For
example,

E(t) = iﬂ G ()G () o O‘t(f)

)

where a(u) is the renormalized coupling at scale p = 1/v/8t.
»> B, (z, t) is is a smoothening of A, (x) and drives it towards the classical minima. Then

1
q(:l}, t) = W&uuporrr GMV(t)GPU(t)7

will be free of the UV-fluctuations that make the computation of @ difficult.

(6)

Liischer 2010, 2014

(7)



Scale Setting from the Wilson Flow

E(t) = t2E(1), W(t) = t— {2(EW)Y}, (9)

Borsanyi et al. 2012
We will use two different scales tp and wq, defined as

EM)i=y, = €0, WB)li=w2 = Wo, (10)
and &y, Wy are reference values, chosen at convenience.
Note that:
> tp captures physics at scales < \/tp, wo captures physics at scales ~ /tg.

» At leading order in A = 4w N.a,

3A

E(t) = 62n2 ——C2(F), C2(F) quadratic Casimir of F representation (11)

this suggests a scaling law relating £(t) in different gauge groups.



The numerical setup
Ensembles of configurations of Sp(N.) pure gauge theories were collected for:
> N.=2,4,6,8.
» Heat Bath + Over Relaxation updates & la Cabibbo-Marinari.
> (B8, V),V = (La)*, chosen to avoid Finite Size Effects.

Then, for each ensemble,

» Each configuration was set as the initial condition for the numerical integration of the Wilson Flow
> £(t), W(t), qr.(t) were computed on the interval 0 < ¢ < L2/32.

> Clover expression was used for gy, (t), both clover and tree level were used for £(t) and W(¢).

Ne¢ L/a B A (tadpole imp.)

2 20 - 32 | 2.5 _2.70 ~2.6 C de JRTYP

4 20-24 | 7.7-82 ~28 /\E?G<T“”> dg =n(2n+1) (12)
6 16 - 20 | 15.75 — 16.3 ~29

8 16 26.5 — 27.2 ~ 3.0




The Wilson Flow — N. =6

175
1,50
1.25 1
frw 1.001 . . . .
E For each value of the coupling, we integrate the flow equations numerically
071 with a third-order Runge-Kutta.
0.50 1 o B = 15.9, pl.
) B=15.9, cl.
029 5 =163, pl. » The quantitites £(¢) and W(t) are obtained using two different
0.004 ! 5 =163, dl discretizations forG,: plaquette, clover, ...
007 y, » The scales can be set from
175 /
/
1.501 // E(t)|t=t0 = &o, W(t)|t:w(2) =W, (13)
1.25 1 /
gmo‘ > The reference values & and Wy are a priory arbitrary.
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050 / 5 =159, pl.
B=159, d.
0.259 8 =163, pl.
0.004 A 3 =163, cl.
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Scaling of the flow as N, — oo

Perturbatively,
3\
Et) = Co(F), 14
() = ~o5 CalF) (14)
where N4l
S =V Co(F) = —— (15)
|:1\",:4{~:28-’lﬁ cl 4
15t N0 3o for Sp(Ne).
. N =6 %:1939 el
) e > It is natural to scale the reference values as follows,
T 1o == memnizaema
e / E(t) = ceCa(F), W(t) = ¢ Ca(F) (16)
0.5 / and this suggests to rescale the flow time accordongly,
oo t —s t/to (17)
0 1 2 3

t/to » This allows us to take N, — oo at fixed \.

» Effects from higher order terms...?



The lattice topological charge

15— Ne=6,8=1575L=18a | |
- » The topological charge is defined as
§ QL) = Z qr(z, t) (18)
=
154 > We use the integer a-rounding to obtain quasi-integer
values for Qr,
O QL(t) = round (&ZqL(a:, t)) , (19)
] x
5 | where & is determined by minimising
i ] A(@) = (16Qr, — round (GQL)?) - (20)
210 4 ]
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The topological susceptibility in the

In(rq Nsw)
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continuum limit

The topological susceptibility can be obtained as

(@7

4
xXra =

L4

)

(21)

» x 1 was computed for every ensemble in units of the lattice

spacing.

> As observed for SU(N) gauge theories, 7q diverges

exponentially as a — 0.

» For each value of N, we obtain the continuum limit

extrapolation of Xt(z) from

2

a
xt(@) = xt(a=0)+ e

Ne xta x/o?
2 | 0.00242(10) || 0.0523(29)
4 | 0.002318(87) || 0.0428(27)
6 | 0.00190(13) | 0.0401(49)
8 | 0.00192(15) || 0.0424(42)

(22)



A comparison with SU(N) gauge theories

0084 +  Athenodorou et al.

Del Debbio et al. » The topological susceptibility has been computed for
oor] b Bomatictal SU(N¢) by various collaborations over more than 20
01 I Bonanno et al. years.
L Lucini et al.
0.06 4 ¢ Bennett ct al.

0.054 ;

» We provide the first estimate of this quantity for

e o * } t Sp(N.) gauge groups with N, = 2, 4, 6, 8.
i
0.03 i
: i Note that:
0.02 H » The susceptibilities coincide for Sp(2) ~ SU(2).

0.014

0.00 — ; ; . . ; . N
00 o1 02 03 04 05 06 » For N. > 4 they seem to tend to different limits.



A new universal ratio
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Thus our final estimate is
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Once the data are rescaled with C2(F)/dg, they overlap.

Define
x Ca(F)?

7Ix=£ o2

NDA yields ny = O (1/(4m)?) ~ 0.0065 at No — oo

As the data seem to lie on a straight line, we fit with

(&
dg) =0 + — 23
nx(da) =ng + o (23)
and that yields
73 = 0.004841(76), X7 = 1.56 (24)

The same fit with only the SU(N,) data yields X2 = 1.83.

Fitting with 1/dZ, corrections does not change the
extrapolation apreciably.

(25)



Conclusion

» The Scale setting was performed for an interval of the inverse coupling for N. = 2, 4, 6, 8.

» The scaling properties of the Wilson flow were analyzed and found to agree with the perturbative
prediction.

» The first estimate of the continuum topological susceptibility was obtained for N. = 2, 4, 6, 8

» A universal large-N. limit was proposed for the topological susceptibility in Yang-Mills theories.

Thank youl
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Discretizations for F(t) and qr(zx, t)
> For E(t): Plaquette (pl.) or Clover (cl.) expressions

E(t) = iTr Vi OV (8),  E(t) = Tr Cruw ()Cpu (8), (26)

Comparing the results obtained with these will allow use to estimate the magnitude of discretization
effects.

» For gr,(z, t): The Clover (cl.) expression

E,ul/po'rI\f C;Lu(t)cpcr( ) (27)

1
3272

qr(z, t) =

Figure: Left: Plaquette, Right: Clover, courtesy of Rothkopf 2021



Wilson action and Wilson Flow

Definitions

We define the theory on a hypercubic euclidean space-time lattice, with Wilson action

1 2N,
SwlUp]=8Y_ (1 - Fﬂfmmy) , B=—5 (28)
z p<v ¢ 90
where
T+ A A
Pouv(z) = Up(@)Us (z + @)U} (x + 2)U] (z) U, (z) = exp (z / darTA AL ()\)) , (29)
x
We define the Wilson flow,
oV, (x, t
WL 3 (1w Vi) Vile, 0, (30)

and the quantities F(¢) and gy, (¢) from their lattice discretizations.



A new universal ratio

It is believed that the theory is confining and gapped even at 6 # 0, and that

9+27rk)

k=0,..,N.—1
Nc

F(9) = fa mkinh (
Now:
> Each of the dg gauge fields contributes equally to F'(6),
fo ox<dg ~ N?

» From perturbative arguments
o x Ca(F)

where the proportionality factor must also depend on N.

(31)

(32)

(33)

As a result, the following quantity should encode some universal feature and have a finite large- N, limit,

X CQ(F)2 . Xoo
= = 1 =b=
Mx Ao o2 Ncll)noo x . < o0

(34)
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