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Introduction
Sp(Nc) gauge theories

Sp(Nc) =
{
U ∈ SU(Nc) | ΩUΩT = U∗

}
, Ω =

[
0 1
−1 0

]
(1)

▶ BSM: Attractive Composite Higgs models based on Sp(Nc) gauge symmetry.

Bennett et al. 2018; Ferretti and Karateev 2014

▶ Large-Nc: Non-trivial alternative to the SU(Nc) and SO(Nc) families of gauge groups
Lovelace 1982; ’t Hooft 1974

▶ SIMP: Strongly Interacting Dark Matter
Hochberg et al. 2015; Kulkarni et al. 2022

▶ Topological structure of the vacuum?



The topological structure of the Sp(Nc) vacuum

Solutions with finite action describe semiclassical barrier penetration between different sectors. The ”true”
vacua are linear combinations of Q-vacua

|θ⟩ =
∑
Q

eiQθ|Q⟩, Q =

∫
d4x q(x) , q(x) =

1

32π2
εµνρσTrFµνF

ρσ

▶ We have that Q ∈ π3(Sp(Nc)) = Z.

▶ We can define

S̃ = −Nc

2λ

∫
d4xTrFµνF

µν −Nc
θ

Nc

∫
d4x q(x), λ = g2Nc (2)

The θ dependence in gauge theories has attracted a lot of interest especially at large-Nc.

▶ The U(1)A problem and the Witten-Veneziano formula: topological susceptibility.
’t Hooft 1976; Veneziano 1979; Witten 1979

▶ The strong-CP problem

▶ θ dependence of observables like glueballs masses...
Bonanno et al. 2022



Theta dependence in gauge theories

General arguments dictate that the free energy F (θ) should be 2π periodic, even and have a minimum at
θ = 0.

F (θ) = fG min
k

h

(
θ + 2πk

Nc

)
k = 0, ..., Nc − 1 (3)

Witten 1980, 1998

In the neighbourhood of θ = 0,

F (θ)− F (0) =
1

2
χθ2(1 + b2θ

2 + b4θ
4 + · · · ) (4)

Bonati et al. 2016

where

χ =
∂2F (θ)

∂θ2

∣∣∣∣
θ=0

=

∫
d4x ⟨q(x)q(0)⟩ (5)

is the topological susceptibility.

▶ The evaluation of χ is difficult on the lattice: UV fluctuations, additive renormalizations

▶ The gradient flow will allow us to both obtain χ and set the scale



The Gradient Flow

The gradient flow Bµ(x, t) is defined by

dBµ(x, t)

dt
= DνGνµ(x, t), Gµν(t) = [Dµ, Dν ] , Dµ ≡ ∂µ + [Bµ, · ] (6)

where the independent variable t is known as flow time, and Bµ(x, 0) = Aµ(x). Lüscher 2010, 2014

▶ Bµ(x, t) is a renormalized field, dimensional physical quantities can be computed at t > 0. For
example,

E(t) =
1

4
TrGµν(t)Gµν(t) ∝

α(µ)

t2
, (7)

where α(µ) is the renormalized coupling at scale µ = 1/
√
8t.

▶ Bµ(x, t) is is a smoothening of Aµ(x) and drives it towards the classical minima. Then

q(x, t) =
1

32π2
εµνρσTrGµν(t)Gρσ(t), (8)

will be free of the UV-fluctuations that make the computation of Q difficult.



Scale Setting from the Wilson Flow

E(t) = t2E(t), W(t) = t
d

dt

{
t2⟨E(t)⟩

}
, (9)

Borsanyi et al. 2012

We will use two different scales t0 and w0, defined as

E(t)|t=t0
= E0 , W(t)|t=w2

0
= W0 , (10)

and E0, W0 are reference values, chosen at convenience.

Note that:

▶ t0 captures physics at scales <
√
t0, w0 captures physics at scales ∼ √

t0.

▶ At leading order in λ = 4πNcα,

E(t) = 3λ

64π2
C2(F ), C2(F ) quadratic Casimir of F representation (11)

this suggests a scaling law relating E(t) in different gauge groups.



The numerical setup

Ensembles of configurations of Sp(Nc) pure gauge theories were collected for:

▶ Nc = 2, 4, 6, 8.

▶ Heat Bath + Over Relaxation updates à la Cabibbo-Marinari.

▶ (β, V ), V = (La)4, chosen to avoid Finite Size Effects.

Then, for each ensemble,

▶ Each configuration was set as the initial condition for the numerical integration of the Wilson Flow

▶ E(t), W(t), qL(t) were computed on the interval 0 < t < L2/32.

▶ Clover expression was used for qL(t), both clover and tree level were used for E(t) and W(t).

Nc L/a β λ̃ (tadpole imp.)

2 20 – 32 2.55 – 2.70 ∼ 2.6
4 20 – 24 7.7 – 8.2 ∼ 2.8
6 16 – 20 15.75 – 16.3 ∼ 2.9
8 16 26.5 – 27.2 ∼ 3.0

λ̃ ≡ dG

β

〈ℜTrPµν

2N

〉
, dG = n(2n+ 1) (12)



The Wilson Flow – Nc = 6
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For each value of the coupling, we integrate the flow equations numerically
with a third-order Runge-Kutta.

▶ The quantitites E(t) and W(t) are obtained using two different
discretizations forGµν : plaquette, clover, . . .

▶ The scales can be set from

E(t)|t=t0
= E0, W(t)|t=w2

0
= W0, (13)

▶ The reference values E0 and W0 are a priory arbitrary.



Scaling of the flow as Nc → ∞
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Perturbatively,

E(t) = 3λ

64π2
C2(F ) , (14)

where

C2(F ) =
Nc + 1

4
(15)

for Sp(Nc).

▶ It is natural to scale the reference values as follows,

E(t) = ceC2(F ), W(t) = cwC2(F ) (16)

and this suggests to rescale the flow time accordongly,

t −→ t/t0 (17)

▶ This allows us to take Nc → ∞ at fixed λ.

▶ Effects from higher order terms...?



The lattice topological charge
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▶ The topological charge is defined as

QL(t) =
∑
x

qL(x, t) (18)

▶ We use the integer α-rounding to obtain quasi-integer
values for QL,

Q̃L(t) ≡ round

(
α̃
∑
x

qL(x, t)

)
, (19)

where α̃ is determined by minimising

∆(α̃) =
〈
[α̃QL − round (α̃QL)]

2
〉

. (20)



The topological susceptibility in the continuum limit
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The topological susceptibility can be obtained as

χLa
4 =

⟨Q2
L⟩

L4
(21)

▶ χL was computed for every ensemble in units of the lattice
spacing.

▶ As observed for SU(N) gauge theories, τQ diverges
exponentially as a → 0.

▶ For each value of Nc, we obtain the continuum limit
extrapolation of χt20 from

χ t20(a) = χ t20(a = 0) + ct
a2

t0
(22)

Nc χt20 χ/σ2

2 0.00242(10) 0.0523(29)
4 0.002318(87) 0.0428(27)
6 0.00190(13) 0.0401(49)
8 0.00192(15) 0.0424(42)



A comparison with SU(N) gauge theories
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▶ The topological susceptibility has been computed for
SU(Nc) by various collaborations over more than 20
years.

▶ We provide the first estimate of this quantity for
Sp(Nc) gauge groups with Nc = 2, 4, 6, 8.

Note that:

▶ The susceptibilities coincide for Sp(2) ≃ SU(2).

▶ For Nc ≥ 4 they seem to tend to different limits.



A new universal ratio
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▶ Once the data are rescaled with C2(F )/dG, they overlap.
Define

ηχ ≡ χ

dG

C2(F )2

σ2
,

▶ NDA yields ηχ = O
(
1/(4π)2

)
≃ 0.0065 at Nc → ∞

▶ As the data seem to lie on a straight line, we fit with

ηχ(dG) = η∞χ +
c

dG
(23)

and that yields

η∞χ = 0.004841(76), X 2
r = 1.56 (24)

▶ The same fit with only the SU(Nc) data yields X 2
r = 1.83.

▶ Fitting with 1/d2G corrections does not change the
extrapolation apreciably.

Thus our final estimate is
lim

Nc→∞
ηχ = (48.41± 0.76± 3.05)× 10−4 (25)



Conclusion

▶ The Scale setting was performed for an interval of the inverse coupling for Nc = 2, 4, 6, 8.

▶ The scaling properties of the Wilson flow were analyzed and found to agree with the perturbative
prediction.

▶ The first estimate of the continuum topological susceptibility was obtained for Nc = 2, 4, 6, 8

▶ A universal large-Nc limit was proposed for the topological susceptibility in Yang-Mills theories.

Thank you!
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Discretizations for E(t) and qL(x, t)
▶ For E(t): Plaquette (pl.) or Clover (cl.) expressions

E(t) =
1

4
Tr Vµν(t)Vµν(t), E(t) =

1

4
Tr Cµν(t)Cµν(t), (26)

Comparing the results obtained with these will allow use to estimate the magnitude of discretization
effects.

▶ For qL(x, t): The Clover (cl.) expression

qL(x, t) =
1

32π2
εµνρσTr Cµν(t)Cρσ(t) (27)

Figure: Left: Plaquette, Right: Clover, courtesy of Rothkopf 2021



Wilson action and Wilson Flow
Definitions

We define the theory on a hypercubic euclidean space-time lattice, with Wilson action

SW[Uµ] ≡ β
∑
x

∑
µ<ν

(
1− 1

Nc
ℜTrPµν

)
, β ≡ 2Nc

g20
(28)

where

Pµν(x) ≡ Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x) , Uµ(x) ≡ exp

(
ı̇

∫ x+µ̂

x
dλµτAAA

µ (λ)

)
, (29)

We define the Wilson flow,
∂Vµ(x, t)

∂t
= −g20 {∂x, µSW [Vµ]}Vµ(x, t) , (30)

and the quantities E(t) and qL(t) from their lattice discretizations.



A new universal ratio

It is believed that the theory is confining and gapped even at θ ̸= 0, and that

F (θ) = fG min
k

h

(
θ + 2πk

Nc

)
, k = 0, ..., Nc − 1 (31)

Now:

▶ Each of the dG gauge fields contributes equally to F (θ),

fG ∝ dG ∼ N2
c (32)

▶ From perturbative arguments
σ ∝ C2(F ) (33)

where the proportionality factor must also depend on Nc.

As a result, the following quantity should encode some universal feature and have a finite large-Nc limit,

ηχ ≡ χ

dG

C2(F )2

σ2
, lim

Nc→∞
ηχ = b

χ∞

σ∞
< ∞ (34)
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