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Feynman–Hellmann (FH) papers:

● ‘A Lattice Study of the Glue in the Nucleon’
arXiv:1205.6410 (PLB)

● ‘A Feynman-Hellmann approach to the spin structure of hadrons’
arXiv:1405.3019 (PRD)

● ‘A novel approach to nonperturbative renormalization of singlet and
nonsinglet lattice operators’
arXiv:1410.3078 (PLB)

● ‘Disconnected contributions to the spin of the nucleon’
arXiv:1508.06856 (PRD)

● ‘Electromagnetic form factors at large momenta from lattice QCD’
arXiv:1702.01513 (PRD)

● ‘Nucleon structure functions from lattice operator product expansion’
arXiv:1703.01153 (PRL)

● ‘Lattice QCD evaluation of the Compton amplitude employing the
Feynman-Hellmann theorem’
arXiv:2007.01523 (PRD)

● ‘Generalized parton distributions from the off-forward Compton
amplitude in lattice QCD’
arXiv:2110.11532 (PRD)

+ Various (Lattice) conferences
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Other related FH talks:

● Mischa Batelaan Monday 8/8/21 14:20 HS6

Calculation of hyperon transition form factors from two-point functions

using the Feynman–Hellmann method

● Rose Smail Tuesday 9/8/21 14:40 HS3

Constraining beyond the standard model nucleon isovector charges

● Utku Can Wednesday 10/8/21 8:50 HS2 (plenary)

The Compton amplitude and Nucleon structure functions

● Alec Hannaford-Gunn Wednesday 10/8/21 18:10 HS2

A lattice QCD calculation of the off-forward Compton amplitude and

generalised parton distributions

● James Zanotti Friday 12/8/21 16:40 HS2

The momentum sum rule via the Feynman–Hellmann theorem
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Motivation:

Need computation of non-perturbative quantities:

⟨H ′
∣O ∣H⟩

General structure

● H ∼ ψψ (meson) or H ∼ ψψψ (baryon)

● O ∼ ψγψ ∼ J or O ∼ FF or even more complicated O ∼ JJ

This talk:

Generalisation of Feynman–Hellmann approach to determination of
(nucleon) matrix elements from degenerate energy states to

near-degenerate or ‘quasi-degenerate’ energy states

● This talk: explanation of the above statement / theory

● Numerical results, following talk: Mischa Batelaan
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Contents

● Feynman–Hellmann approach via transfer matrix to computation of
2-pt correlation functions
● Quasi-degenerate states
● Dyson expansion
● Reduction to a Generalised EigenVector Problem (GEVP)

● Examples
● N scattering: flavour diagonal matrix elements
● Decay/transition matrix elements, eg Σ→ N
● Sketches of avoided energy levels

● Inclusion of spin

● Conclusions
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Feynman–Hellmann (FH) — some Mathematical Details

Hamiltonian formalism: regard Euclidean time (at least) as continuous

Consider the 2-point nucleon correlation function

CλB′B(t; p⃗, q⃗) = λ⟨0∣
ˆ̃B ′
(0; p⃗′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sink∶momop

Ŝ(q⃗)t ˆ̄B(0, 0⃗)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Source∶ spatial

∣0⟩λ

where Ŝ is the q⃗-dependent transfer matrix

Ŝ(q⃗) = e−Ĥ(q⃗)

and in the presence of a perturbation [λα = ∣λα∣e iφα ]

Ĥ(q⃗) = Ĥ0 −∑
α

λα
ˆ̃
Oα(q⃗)

where [At leading order can drop α index]

ˆ̃
O(q⃗) = ∫

x⃗
(Ô(x⃗)e i q⃗⋅x⃗ + Ô†

(x⃗)e−i q⃗⋅x⃗)
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Physical situation (quasi-degenerate energies):

● Quasi-degenerate states:

Ĥ0∣Br(p⃗r)⟩ = EBr (p⃗r)∣Br(p⃗r)⟩ r = 1 , . . . ,dS

where

EBr (p⃗r) = Ē(p⃗, q⃗) + εr(p⃗, q⃗)

● Well separated from higher energy states:

Ĥ0∣X(p⃗X )⟩ = EX (p⃗X )∣X(p⃗X )⟩ EX ≫ Ē

● Quasi-degenerate states taken as lowest energy
states

S
1

d
S
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Now insert two complete sets of unperturbed states ∣X⟩ →
∣X⟩

√

⟨X ∣X⟩
, ∣0⟩ → ∣0⟩

⨋
X(p⃗X )

∣X (p⃗X ))⟩ ⟨X (p⃗X )∣

≡ ∑
r

∣Br(p⃗r)⟩⟨Br(p⃗r)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

of interest

+⨋
EX≫Ē

∣X (p⃗X ))⟩ ⟨X (p⃗X )∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

higher states

= 1̂

before and after Ŝ t to give

CλB′B(t; p⃗, q⃗) =

⨋
X(p⃗X )

⨋
Y (p⃗Y )

λ⟨0∣
ˆ̃B ′
(p⃗′)∣X (p⃗X )⟩ ⟨X (p⃗X )∣Ŝλ(q⃗)

t
∣Y (p⃗Y )⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
need

⟨Y (p⃗Y )∣
ˆ̄B(0⃗)∣0⟩λ

Time dependent perturbation theory via the Dyson Series
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Dyson expansion – iterate identity

e−(Ĥ0−λα ˆ̃Oα)t = e−Ĥ0t + λα ∫
t

0
dt′ e−Ĥ0(t−t′) ˆ̃Oα e−(Ĥ0−�

��HHHλβ
ˆ̃Oβ )t′

● O(λ2) gives Compton like amplitudes ∼ ⟨. . . ∣OαOβ ∣ . . .⟩ – not considered here

● Consider 4 possible pieces separately:

⟨Br ∣e−(Ĥ0−λ ˆ̃O)t ∣Bs⟩ = e−Ē t (δrs + tDrs +O(2))

⟨Br ∣e−(Ĥ0−λ ˆ̃O)t ∣Y ⟩ = e−Ē t ⎛
⎝λ
⟨Br ∣ ˆ̃O∣Y ⟩
EY − EBr

+O(2)⎞⎠ +
more

damped

. . . = . . .

● Drs(p⃗, q⃗) ∶

Drs(p⃗, q⃗) = −εrδrs + λ⟨Br(p⃗r)∣
ˆ̃
O(q⃗)∣Bs(p⃗s)⟩

As dS × dS dimensional Hermitian matrix:

Drs =
dS

∑
i=1

µ(i)e(i)r e(i)∗s µ, er eigenvalues/eigenvectors



Introduction FH Examples Sketches Spin Conclusions

This gives finally:

CλB′B(t; p⃗, q⃗) =
dS

∑
i=1

A
(i)
λB′B(p⃗, q⃗) e

−E(i)
λ
(p⃗,q⃗)t

+more damped + . . .

Perturbed energies:

E
(i)
λ (p⃗, q⃗) = Ē(p⃗, q⃗) − µ

(i)
(p⃗, q⃗) , i = 1, . . . ,dS

with

A
(i)

λB′B
(p⃗, q⃗) = ∑

rs

(λ⟨0∣ ˆ̃B′(p⃗ ′)∣Br (p⃗r )⟩λ e
(i)
r )(e

(i)∗
s λ⟨Bs(p⃗s)∣ ˆ̄B(0⃗)∣0⟩λ)

∣Bs(p⃗s)⟩λ = ∣Bs(p⃗s)⟩ + λ⨋
EY≫Ē

∣Y (p⃗Y )⟩
⟨Y (p⃗Y )∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩

EY − EBs

[So a factorisation where unwanted ∣Y ⟩ states have been absorbed into time indept renormalisation of wavefunction]
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Finally set

B ′
∼ Br(p⃗r) B ∼ Bs

giving

Cλ rs(t) =
dS

∑
i=1

v (i)r ū(i)s e−E
(i)
λ

t

where

v (i)r = Zre
(i)
r ū(i)s = Z̄se

(i)∗
s

[Zr , Z̄s are wavefunctions]

● So problem is now reduced to a GEVP to determine eigenvalues E
(i)
λ

● GEVP eigenvectors should follow pattern of e⃗(i)



Introduction FH Examples Sketches Spin Conclusions

Relation between momenta

● For the matrix elements have

[Ô(x⃗) = e−i
ˆ⃗p⋅x⃗ Ô(0⃗) ei

ˆ⃗p⋅x⃗ ]

⟨B(p⃗r)∣ ˆ̃O(q⃗)∣B(p⃗s)⟩
= ⟨Br(p⃗r)∣Ô(0⃗)∣Bs(p⃗s)⟩ δp⃗r ,p⃗s+q⃗ + ⟨B(p⃗r)∣Ô

†(0⃗)∣B(p⃗s)⟩ δp⃗r ,p⃗s−q⃗

● So matrix elements step up or down in q⃗ /= 0⃗

p⃗r = p⃗s + q⃗ or p⃗r = p⃗s − q⃗

[Momentum conservation]

● Diagonal matrix elements vanish
So quasi-degenerate states have to mix
[ie must consider degenerate perturbation theory]

S
1

d
S
  

                        

                

● Each step up or down corresponds to another order in λ (Dyson
expansion)

So (eg) O(λ2) gives Compton like amplitudes ∼ ⟨. . . ∣OαOβ ∣ . . .⟩
Step up step down now possible: p⃗ → p⃗ ± q⃗ → p⃗ relevant for DIS
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Quasi–degenerate baryon energy states I

● Flavour diagonal matrix elements – N scattering

O(x⃗) ∼ (ūγu)(x⃗) − (d̄γd)(x⃗)

● dS = 2-dimensional space: r , s = 1, 2

∣B1(p⃗1)⟩ = ∣N(p⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB1
(p⃗1)≡EN(p⃗)=Ē+ε1

∣B2(p⃗2)⟩ = ∣N(p⃗ + q⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB2
(p⃗2)≡EN(p⃗+q⃗)=Ē+ε2

⟨Br(p⃗r)∣
ˆ̃
O(q⃗)∣Bs(p⃗s)⟩ = (

0 a∗

a 0
)
rs

where

a = ⟨B2(p⃗2)∣Ô(0⃗)∣B1(p⃗1)⟩ ≡ ⟨N(p⃗ + q⃗)∣Ô(0⃗)∣N(p⃗)⟩
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Quasi–degenerate baryon energy states II

● Flavour transition matrix elements – (eg) Σ(sdd) → N(udd) decay

O(x⃗) ∼ (ūγs)(x⃗)

● dS = 2-dimensional space: r , s = 1, 2

∣B1(p⃗1)⟩ = ∣Σ(p⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB1
(p⃗1)≡EΣ(p⃗)=Ē+ε1

∣B2(p⃗2)⟩ = ∣N(p⃗ + q⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB2
(p⃗2)≡EN(p⃗+q⃗)=Ē+ε2

⟨Br(p⃗r)∣
ˆ̃
O(q⃗)∣Bs(p⃗s)⟩ = (

0 a∗

a 0
)
rs

where

a = ⟨B2(p⃗2)∣Ô(0⃗)∣B1(p⃗1)⟩ ≡ ⟨N(p⃗ + q⃗)∣Ô(0⃗)∣Σ(p⃗)⟩

● ie similar structure to N scattering case
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Diagonalising Drs(p⃗, q⃗) ∶

Drs(p⃗, q⃗) = −εrδrs + λ⟨Br(p⃗r)∣
ˆ̃
O(q⃗)∣Bs(p⃗s)⟩ = (

−ε1 a∗

a −ε2
)
rs

1) Eigenvalues µ±: [quadratic equation]

Giving energies

E
(±)
λ (p⃗, q⃗) = Ē − µ±

=
1

2
(EN(p⃗ + q⃗) + EN/Σ(p⃗)) ∓

1

2
∆Eλ(p⃗, q⃗)

with

∆Eλ = E
(−)
λ − E

(+)
λ

and

∆Eλ(p⃗, q⃗) =

√

(EN(p⃗ + q⃗) − EN/Σ(p⃗))2 + 4λ2 ∣⟨N(p⃗ + q⃗)∣Ô(0⃗)∣N/Σ(p⃗)⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣a∣2
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Degenerate energy states – N scattering

eg 1-dimensional (exaggerated) sketch: [λ2∣a∣2 = const., q = 1]

−1 −0.5 0 0.5 1

p

E
N
(p+1)E

N
(p)

⇒

−1 −0.5 0 0.5 1

p

E
(−)

E
(+)

● Free case ⇒ Interacting case: avoided energy levels

● Sketch curves based on previously derived formulae: E (+), E (−)

● Degeneracy: EN(p) = EN(p + q) at p = −q/2
[Similarly when EN(p) = EN(p − q) at p = q/2]
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Quasi–degenerate energy states – Σ→ N decay

eg 1-dimensional (exaggerated) sketch: [λ2∣a∣2 = const., q = 1]

−1 −0.5 0 0.5 1

p

E
N
(p+1)E

Σ
(p)

⇒

−1 −0.5 0 0.5 1

p

E
(−)

E
(+)

● Free case ⇒ Interacting case: avoided energy levels

● Sketch based on previous formulae



Introduction FH Examples Sketches Spin Conclusions

Diagonalising Drs(p⃗, q⃗) ∶

Drs(p⃗, q⃗) = −εrδrs + λ⟨Br(p⃗r)∣
ˆ̃
O(q⃗)∣Bs(p⃗s)⟩ = (

−ε1 a∗

a −ε2
)
rs

2) Eigenvectors e
(±)
r :

e(±)r = N(±)(a)(
λ∣a∣
γ±e

iθa )
r

● γ± =
1
2
(EN/Σ − EN) ±

1
2
∆E

● N(±)(a) normalisation factor

● θa phase of a: a = ∣a∣e iθa , ie phase of matrix element contained in
eigenvectors

● Components related: e
(−)
2 = −e

(+)
1 e iθa and e

(+)
2 = e

(−)
1 e iθa
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Quasi–degenerate eigenvectors – Σ→ N decay

e⃗(±) = (
e
(±)
1

e
(±)
2

)

eg 1-dimensional sketch: [λ2∣a∣2 = const., θa = 0, q = 1]

−1 −0.5 0 0.5 1

p

0

1

e
1

(−)2
=e

2

(+)2

e
1

(+)2
=e

2

(−)2

⇒

−1 −0.5 0 0.5 1

p

0

1

e
1

(−)2
=e

2

(+)2

e
1

(+)2
=e

2

(−)2

● Free case ⇒ Interacting case: change of state

● Sketch based on previous formulae
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Incorporating the spin index

● ∣Br(p⃗r)⟩ → ∣Br(p⃗r , σr)⟩, σr = ±1 spin index

● D matrix doubled in size: σr r = +1,−1, . . . + dS ,−dS ie 2dS × 2dS

● Energy states corresponding to ∣Br(p⃗r , σr)⟩, σ = ± are degenerate

[Kramers degeneracy] so still have dS eigenvalues: E (i)λ
● Explicit form factor decomposition of matrix element shows that different

spin components of matrix elements related to each other

● Upshot for previous examples [η = ±]

⟨Br(p⃗r , σr)∣ ˆ̃O(q⃗)∣Bs(p⃗s , σs)⟩ = (
0 a∗

a 0
)
σr r,σs s

a → ( a++ a+−
−ηa∗+− ηa∗++

)

● Giving

∆Eλ(p⃗, q⃗) =
√
(EN(p⃗ + q⃗) − EN/Σ(p⃗))2 + 4λ2 ∣det a∣2

where

∣det a∣2 = ∣⟨N(p⃗ + q⃗,+)∣Ô(0⃗)∣N/Σ(p⃗,+)⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣a++ ∣2

+ ∣⟨N(p⃗ + q⃗,+)∣Ô(0⃗)∣N/Σ(p⃗,−)⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣a+− ∣2
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Conclusions

● FH approach is a viable alternative to conventional method of 3-pt
correlation functions for computing matrix elements

● FH approach only requires 2-pt correlation functions

● FH approach now generalised to decays

● With quasi-degenerate theory, don’t need to tune for degenerate
energies as before – in principle can re-use propagators for other
decay/transition processes

● Example of method for Σ→ N decay for ⟨N ∣ūγ4s ∣Σ⟩ in next talk
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