# Inclusive semi-leptonic decays of charmed mesons with Möbius domain wall fermions

#### Ryan Kellermann

in collaboration with

Alessandro Barone, Shoji Hashimoto, Andreas Jüttner and Takashi Kaneko

Graduate University for Advanced Studies SOKENDAI

Lattice2022, August 12th, 2022





<u>\_\_\_\_\_\_</u>ке<sup>ND</sup>\_\_\_\_\_ s



# Introduction and Motivation

Inclusive semileptonic decay rate



#### This work

- Understand systematic errors
- Validate using experimental data (BESIII) [BESIII, arxiv.2203.04938]

See also

- Comparison of Chebyshev to Backus-Gilbert (A. Barone's talk)
- Inclusive B-meson decay [Gambino et al., arXiv:2203.11762] (A. Smecca's talk)

## Hadronic Tensor

contains all non-perturbative information

$$\begin{split} W^{\mu\nu}(\boldsymbol{p},\boldsymbol{q}) &= \sum_{X_s} (2\pi)^3 \delta^{(4)}(\boldsymbol{p}-\boldsymbol{q}-\boldsymbol{r}) \\ &\times \frac{1}{2E_{D_s}} \left\langle D_s(\boldsymbol{p}) | \tilde{J}^{\mu\dagger}(-\boldsymbol{q}) | X_s(\boldsymbol{r}) \right\rangle \left\langle X_s(\boldsymbol{r}) | \tilde{J}^{\nu}(\boldsymbol{q}) | D_s(\boldsymbol{p}) \right\rangle \end{split}$$

Total Decay Rate [Gambino, Hashimoto,arXiv:2005.13730]

$$\Gamma = \frac{G_F^2 |V_{cs}|^2}{24\pi^3} \int_0^{q_{\rm max}^2} dq^2 \sqrt{q^2} \ \bar{X}$$

$$\bar{X} = \int_{\omega_{\min}}^{\omega_{\max}} d\omega \ K_{\mu\nu}(\boldsymbol{q},\omega) \times \boldsymbol{W}^{\mu\nu}$$
$$= \int_{0}^{\infty} d\omega K_{\mu\nu}(\omega,\boldsymbol{q}) \langle D_{s}(0) | \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q}) \delta(\hat{H}-\omega) \tilde{J}_{\nu}(\boldsymbol{q}) | D_{s}(0) \rangle$$
$$= \langle D_{s}(\boldsymbol{0}) | \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q}) K_{\mu\nu}(\boldsymbol{q},\hat{H}) \tilde{J}_{\nu}(\boldsymbol{q}) | D_{s}(\boldsymbol{0}) \rangle$$

#### Reconstruction from lattice data

lattice data

$$C^{JJ}_{\mu\nu}(t) \sim \langle D_s | \tilde{J}^{\dagger}_{\mu}(-q) e^{-\hat{H}t} \tilde{J}_{\nu}(q) | D_s \rangle$$

energy integral in incl. rate

 $\bar{X} = \langle D_s(\mathbf{0}) | J_{\mu}^{\dagger} K_{\mu\nu}(\boldsymbol{q}, \hat{H}) J_{\nu} | D_s(\mathbf{0}) \rangle$ 



One can construct an approximation of  $K(q, \hat{H})$  in terms of  $e^{-\hat{H}}$ 

$$K(\mathbf{q}, \hat{H}) = k_0 + k_1 e^{-\hat{H}} + \dots + k_N e^{-N\hat{H}},$$

which then allows us to write

$$\bar{X} \sim k_0 \underbrace{\langle D_s | \tilde{J}^{\dagger}_{\mu}(-\mathbf{q}) \tilde{J}_{\nu}(\mathbf{q}) | D_s \rangle}_{C^{JJ}_{\mu\nu}(0)} + k_1 \underbrace{\langle D_s | \tilde{J}^{\dagger}_{\mu}(-\mathbf{q}) e^{-\tilde{H}} \tilde{J}_{\nu}(\mathbf{q}) | D_s \rangle}_{C^{JJ}_{\mu\nu}(1)} + k_N \underbrace{\langle D_s | \tilde{J}^{\dagger}_{\mu}(-\mathbf{q}) e^{-\hat{H}N} \tilde{J}_{\nu}(\mathbf{q}) | D_s \rangle}_{C^{JJ}_{\mu\nu}(N)}$$

#### Chebyshev Approximation

Modified Chebyshev polynomials  $T_j^*(e^{-\omega})$  to approximate  $K(\omega)$  in the range  $[\omega_0, \infty]$ , with  $0 \le \omega_0 < \omega_{\min}$ 

$$K(\omega) \simeq \sum_{j} c_{j}^{*} T_{j}^{*}(e^{-\omega})$$

 $T_1^*(x) = 2x - 1, \ T_2^*(x) = 8x^2 - 8x + 1, \ T_3^*(x) = 32x^3 - 48x^2 + 18x - 1, \ \ldots$ 

Kernel function

$$K(\omega) = \theta(m_{D_s} - \sqrt{q^2} - \omega)$$

step function to implement the upper limit of the  $\omega$  integral;  $\omega_{\max} = m_{D_s} - \sqrt{q^2}$ 



#### Chebyshev Approximation – Kernel Function

Stabilize approximation by applying a smearing with a width  $\sigma$ 

$$K_{\sigma}(\omega) = \left| \theta \right|_{\sigma} \left( m_{D_s} - \sqrt{q^2} - \omega \right)$$



Limits to be taken

- $\bullet\,$  smearing of the Kernel,  $\sigma\to 0$
- $\bullet\,$  Order of Chebyshev polynomials,  $N\to\infty$

#### Constructing the Approximation

The  $\omega$ -integral can be approximated as

$$\frac{\langle \psi_{\mu}|K(\hat{H})|\psi_{\nu}\rangle}{\langle \psi_{\mu}|\psi_{\nu}\rangle} = \frac{c_{0}^{*}}{2} + \sum_{j=1}^{N} c_{j}^{*} \underbrace{\frac{\langle \psi_{\mu}|T_{j}^{*}(e^{-\hat{H}})|\psi_{\nu}\rangle}{\langle \psi_{\mu}|\psi_{\nu}\rangle}}_{C(t+2t_{0})/C(2t_{0})},$$

with  $|\psi_{\nu}\rangle \equiv e^{-\hat{H}t_0}\tilde{J}_{\nu}(\boldsymbol{q})|D_s(\boldsymbol{0})\rangle$ . Coefficients are given by

$$c_j^* = \frac{2}{\pi} \int_0^{\pi} d\theta K \left( -\ln \frac{1 + \cos \theta}{2} \right) \cos(j\theta) \quad , \quad \text{when } \omega_0 = 0$$

Property of the Chebyshev polynomials

$$\left| \frac{\langle \psi_{\mu} | T_{j}^{*}(e^{-\hat{H}}) | \psi_{\nu} \rangle}{\langle \psi_{\mu} | \psi_{\nu} \rangle} \right| \leq 1.$$

- Use as a constraint: suppress statistical noise for large j, for which huge cancellations are expected
- Use as an upper limit of the error: bound by  $0 \pm 1$ , for all j

## Lattice setup

[Colquhoun et al., arXiv:2203.04938

|   | ID                                                                                          | $a \ (fm)$ | β    | $L^3 \times N_T$   | $\times L_s$ | $N_{\rm cfg}$ | $am_l$ | $am_s$ | $am_Q$    |
|---|---------------------------------------------------------------------------------------------|------------|------|--------------------|--------------|---------------|--------|--------|-----------|
|   | C- $ud5$ - $sa$                                                                             | 0.080      | 4.17 | $32^3 \times 64$   | $\times 12$  | 100           | 0.019  | 0.04   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | $\operatorname{C-}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0.080      | 4.17 | $32^3 \times 64$   | $\times 12$  | 100           | 0.019  | 0.03   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | $\operatorname{C-}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0.080      | 4.17 | $32^3 \times 64$   | $\times 12$  | 100           | 0.012  | 0.04   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | C-ud4-sb                                                                                    | 0.080      | 4.17 | $32^3 \times 64$   | $\times 12$  | 100           | 0.012  | 0.03   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | C- $ud3$ - $sa$                                                                             | 0.080      | 4.17 | $32^3 \times 64$   | $\times 12$  | 100           | 0.007  | 0.04   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | $\operatorname{C-}\! ud3\text{-}s\mathrm{b}$                                                | 0.080      | 4.17 | $32^3 \times 64$   | $\times 12$  | 100           | 0.007  | 0.03   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | C-ud2-sa-L                                                                                  | 0.080      | 4.17 | $48^3 \times 96$   | $\times 12$  | 100           | 0.0035 | 0.04   | 0.44037   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | $\operatorname{M-}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0.055      | 4.35 | $48^{3} \times 96$ | $3 \times 8$ | 50            | 0.012  | 0.025  | 0.27287   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.42636   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | $\operatorname{M-}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0.055      | 4.35 | $48^{3} \times 96$ | $3 \times 8$ | 50            | 0.008  | 0.025  | 0.27287   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.42636   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
| ( | M- $ud3$ - $sa$                                                                             | 0.055      | 4.35 | $48^{3} \times 96$ | $3 \times 8$ | 42            | 0.0042 | 0.025  | 0.27287   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.42636   |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.68808   |
|   | F- $ud$ 3- $sa$                                                                             | 0.044      | 4.47 | $64^3 \times 12$   | $8 \times 8$ | 50            | 0.003  | 0.015  | 0.210476  |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.328869  |
|   |                                                                                             |            |      |                    |              |               |        |        | 0.5138574 |

A first study with JLQCD ensembles

- $\bullet$  Lattice size:  $48^3\times96$
- Lattice spacing: a = 0.055 fm
- 2+1 Möbius domain-wall fermions
- u, d quarks at  $m_{\pi} \simeq 300 \,\mathrm{MeV}$
- *s*, *c* quark simulated at near-physical values
- 4 choices of momentum insertion corresponding to  $\mathbf{q} = (0,0,0) \rightarrow (1,1,1)$
- Numerical computation on Fugaku
- Used Grid/Hadrons

#### First Numerical Results

$$\bar{X} = \langle D_s(\mathbf{0}) | \tilde{J}^{\dagger}_{\mu}(-\mathbf{q}) K_{\mu\nu}(\mathbf{q}, \hat{H}) \tilde{J}_{\nu}(\mathbf{q}) | D_s(\mathbf{0}) \rangle$$



- Decompose  $\bar{X}$  into different channels of V and A;  $\parallel$  and  $\perp$
- Comparison of  $VV \parallel$  with exclusive  $D \to K$  decay data indicates that values are in the right ballpark
- further analysis on *dangerous region*, i.e close to the end of the phase space

## Above the end-point, $AA \parallel$

At  $\boldsymbol{q} = (1, 1, 1)$ , where  $X_{AA}^{\parallel}$  receives contributions only from the vector state.  $E_{V,\min}$  is above the threshold  $\rightarrow \bar{X}$  expected to be zero.

- set  $\sigma = \frac{1}{N}$ ; enables us to take both limits simultaneously
- due to statistical uncertainties higher orders in the Chebyshev approximation are basically  $0 \pm 1$ ; only add errors to  $\bar{X}$  by  $\sum_i |c_i^*|$



## Close to the end-point, $VV \parallel$

For  $X_{VV}^{\parallel}$  at  $\boldsymbol{q} = (1, 1, 1)$ 

• Contributions from the pseudoscalar and vector mesons:

$$\begin{aligned} \langle \eta(p_{\eta}) | V^{\mu} | D_s(p_D) \rangle &= f_+(q^2) (p_D + p_{\eta})^{\mu} + f_-(q^2) (p_D - p_{\eta})^{\mu} \\ \langle \varphi(p_{\Phi}) | V^{\mu} | D_s(p_D) \rangle &= 2g(q^2) \varepsilon^{\mu\nu\varrho\chi} p_D^{\nu} p_{\varphi}^{\varrho} \epsilon^{*,\chi} \end{aligned}$$

Contributions to each channel

• KK:  $A_{\rm PS}^2 e^{-E_{\rm PS}t} + 2/3A_{\rm V}^2 e^{-E_{\rm V}t}$ 

• 
$$IJ: A_{\rm PS}^2 e^{-E_{\rm PS}t} - 1/3A_{\rm V}^2 e^{-E_{\rm V}t}$$

Extract the ground state contribution from

• 
$$KK - IJ = A_V^2 e^{-E_V t}$$

• 
$$KK + 2IJ = 3A_{PS}^2 e^{-E_{PS}t}$$



## Close to the end-point, $VV \parallel$

Higher orders of the Chebyshev approximation are dominated by statistical uncertainties and are basically  $0 \pm 1$ ; only add errors to  $\bar{X}$  by  $\sum_i |c_i^*|$ 



- expected behavior: q = (1, 1, 1) is dominated by the ground state  $\rightarrow$  require  $\sigma \rightarrow 0$  to obtain a reliable estimate
- Ground state contribution is covered by the error of the inclusive analysis; as it should

## Taking the $N \to \infty$ limit

Conservative error estimate from the N (or  $\sigma$ ) dependence



central values of the points remain stable

- $\bullet\,$  error bars show the mathematical upper limit, when the  $N\to\infty\,$  limit is taken
  - $\rightarrow$  likely an overestimation; real error expected to be smaller
- proper estimate requires knowledge on the spectrum
  - With a flat spectrum, errors cancel around the threshold
  - Real problem might occur when the spectrum rapidly changes; expected only near the ground state

# Summary and Outlook

- Inclusive  $D \to X \ell \nu$ : towards a lattice computation with fully controlled systematics
- Important systematic error due to the approximation of the kernel function
  → Conservative error estimate employing the mathematical properties of the Chebyshev
  polynomials; needs more study
- Extend to different ensembles (two more lattice spacings)
- Extend to different inclusive channels  $D \to X_s$ ,  $D_s \to X_d$  and  $D \to X_d$
- Estimates for the total decay rate and compare the results with the experiment