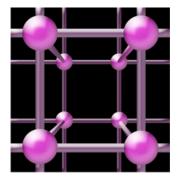

The search for new physics in $B \to K \ell^+ \ell^-$ and $B \to K \nu \bar{\nu}$ using precise lattice QCD form factors

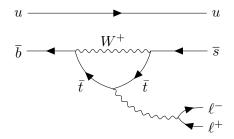
William Parrott

2399654p@student.gla.ac.uk

University of Glasgow

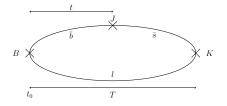

C. Bouchard, C.T.H. Davies

- Results of arXiv 2207.12468 and 2207.13371
- ▶ $B \to K$ motivation
- Calculation of hadronic form factors on the lattice
- ▶ Studying $B \to K$ using heavy-HISQ

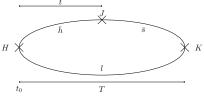

Results:

 $B \to K$ form factors and phenomenology Tensions with LHCb

$B \to K$ motivation

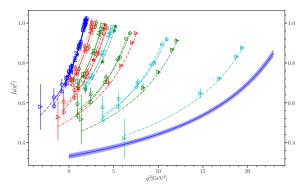


- ▶ Rare flavour changing neutral currents require loops
- ▶ Highly suppressed in the SM
- ▶ A good place to look for new physics
- ▶ We need very precise theoretical and experimental determinations to test SM
- ▶ Theory requires precise form factors for the hadronic part of the decay, which we calculate on the lattice


 $\frac{d\Gamma}{dq^2} = \mathcal{F}_1 |F_P(f_0, f_+, W_i)|^2 + \mathcal{F}_2 f_+^2 + \mathcal{F}_3 |F_V(f_+, f_T, W_i)|^2 + \mathcal{F}_4 |f_+ F_P^*(f_0, f_+, W_i)|^2$

- ▶ Parameterise the 'QCD bit' in a differential decay rate
- ▶ Need $f_0(q^2)$, $f_+(q^2)$ and $f_T(q^2)$ form factors for $B \to K \ell^+ \ell^-$
- ► Encode meson structure and describe the shape in $q^2 = (p_{\text{mother}} - p_{\text{daughter}})^2$ space
- ▶ Form factors are constructed from matrix elements calculated via 3pt functions on the lattice

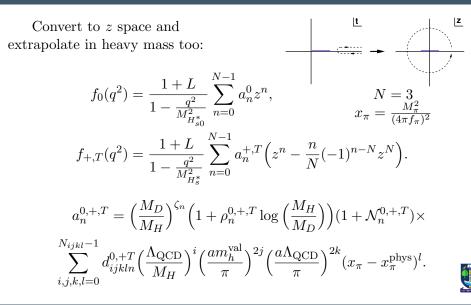
- ▶ Want meson form factors over the full range of q^2 values
- ▶ f_0 , f_+ and f_T form factors use matrix elements from 3-point correlation functions with scalar, vector and tensor current insertions
- ▶ Typically use 3 or 4 T values on each ensemble, as well as averaging over 8 or 16 t_0 values (4 on finest lattice)
- ▶ We fit the time dependence to extract matrix elements from correlators \underbrace{t}_{t}

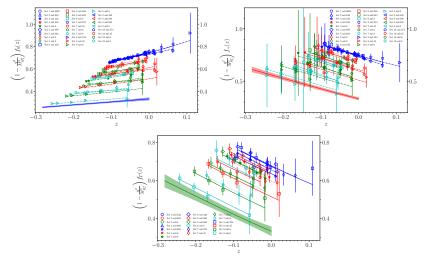


$H \to K$ form factors

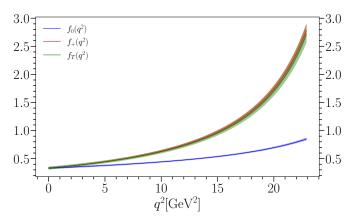
Heavy-HISQ:

- Can't reach physical b mass
- ▶ Proceed for $H \to K$ using 'heavy' mass m_h
- $am_c \le am_h \le 0.8$ on each ensemble
- ▶ $am_b \approx 0.9$ on finest
- ► $f_0 \& f_+$ non-pert. normalised (PCVC) For f_T , use normalisation from arXiv 2008.02024
- ▶ First fully relativistic calculation

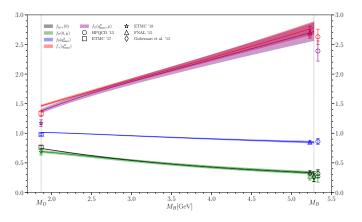



- ▶ MILC HISQ 2+1+1 ensembles. All valence quarks HISQ
- ▶ 5 lattice spacings in range 0.15-0.045fm. All with $m_s/m_l = 5$, and 3 with physical m_l too
- ▶ Charm mass easy to reach on all ensembles and discretisation effects in the HISQ action very small. $0.038 \le (am_c)^2 \le 0.789$
- ▶ Heavier masses on finer ensembles
- Cover whole physical q² range using twisted b.c.s to give momentum to daughter s quark
- \blacktriangleright Once we have data on each ensemble, need to extrapolate to the continuum and B mass

Moving to $B \to K$



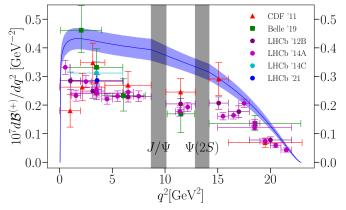
$B \to K$ form factors


The z expansion is well behaved in all cases.

Evaluate at the continuum, physical point and B mass to give precise form factors across whole q^2 range.

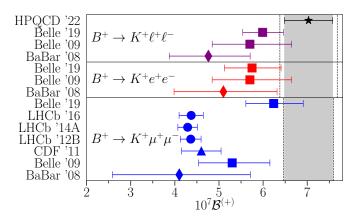
$B \to K$ form factors

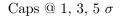
Heavy-HISQ fits behaviour in M_H at fixed q^2 . Improvements in precision, particularly at low q^2 . Agree at $D \to K$ end too.

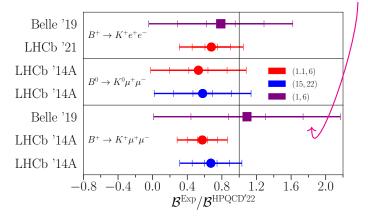

We can use the form factors to get at the differential decay rate for $B\to K\ell^+\ell^- \colon$

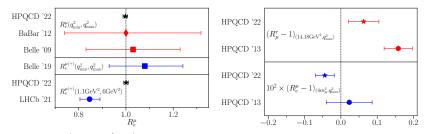
$$\frac{d\Gamma^{B \to K\ell^+\ell^-}}{dq^2} = \mathcal{F}_1 |F_P(f_0, f_+, W_i)|^2 + \mathcal{F}_2 f_+^2$$
$$+ \mathcal{F}_3 |F_V(f_+, f_T, W_i)|^2 + \mathcal{F}_4 |f_+ F_P^*(f_0, f_+, W_i)|$$

where W_i are Wilson coefficients and \mathcal{F}_i are known functions of kinematic factors and W_i (see 2207.13371). Does not account for $c\bar{c}$ resonances.

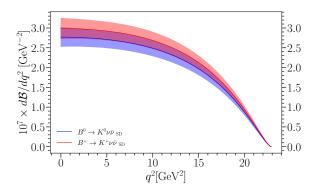

We can compare this with experiment, in differential form and integrate to get $\mathcal{B} = \Gamma \tau_B$.



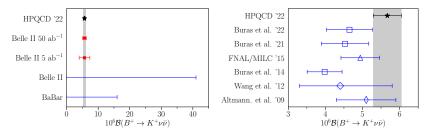

We can compare $\frac{d\mathcal{B}(B^+ \to K^+ \mu(e)^+ \mu(e)^-)}{dq^2}$ with binned experimental data.


Can also integrate across the whole q^2 range to get the branching fraction. Vetoed region treated the same as experiment.

We find large tensions in the theoretically clean regions of q^2 : 1.1-6 GeV² and 15-22 GeV².



Our $R_e^{\mu} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)}$ (including 1% uncertainty for QED on the left) is much more precise than experiment - does not contribute to tension.



$B \to K \nu \bar{\nu}$ phenomenology

$$\frac{d\mathcal{B}(B \to K\nu\bar{\nu})_{\rm SD}}{dq^2} = \frac{(\eta_{\rm EW}G_F)^2 \alpha_{\rm EW}^2 X_t^2}{32\pi^5 \sin^4 \theta_W} \tau_B |V_{tb}V_{ts}^*|^2 |\vec{p}_K|^3 f_+^2(q^2)$$

Experimental bounds on theoretically clean $\mathcal{B}(B \to K \nu \bar{\nu})$ are expected to improve as Belle II takes more data.

Conclusions

- ▶ First fully relativistic calculation of $B \to K$ form factors
- ▶ Reduced uncertainty, particularly at low q^2
- ▶ $B \rightarrow K$ branching fractions show $3 5\sigma$ tension with LHCb in clean regions
- ▶ Reduced below 2σ with BSM adjustments to C_9 and C_{10}
- Uncertainty on R_e^{μ} dominated by experiment and QED
- ▶ Branching fractions for $B \to K \nu \bar{\nu}$ now with < 10% error
- ▶ Belle II promised similar uncertainty at 50 ab⁻¹ (arXiv: 2101.11573)

Thanks for listening. Any questions?

