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Results of arXiv 2207.12468
and 2207.13371

» B — K motivation

» Calculation of hadronic form factors
on the lattice

Studying B — K using heavy-HISQ
> Results:

B — K form factors and phenomenology
Tensions with LHCDb
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Rare flavour changing neutral currents require loops
Highly suppressed in the SM
A good place to look for new physics
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We need very precise theoretical and experimental determinations
to test SM

Theory requires precise form factors for the hadronic part of the :&
decay, which we calculate on the lattice
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Parameterise the ‘QCD bit’ in a differential decay rate
Need fo(q?), f+(q?) and fr(q¢?) form factors for B — K{+4~
Encode meson structure and describe the shape

in g% = (Pmother — Pdaughter)> Space

Form factors are constructed from matrix elements
calculated via 3pt functions on the lattice
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Want meson form factors over the full range of ¢ values

» fo, f+ and fr form factors use matrix elements from 3-point
correlation functions with scalar, vector and tensor current
insertions

» Typically use 3 or 4 T values on each ensemble, as well as
averaging over 8 or 16 ¢y values (4 on finest lattice)

» We fit the time dependence to extract matrix elements from

correlators -t
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Heavy-HISQ:
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Can’t reach physical
b mass

Proceed for H - K
using

‘heavy’ mass myp,
am. < amyp, < 0.8
on each ensemble g ’ 0 5 0

[GeVY]

amy ~ 0.9 on finest

fo & f+ non-pert. normalised (PCVC)
For fr, use normalisation from arXiv 2008.02024

First fully relativistic calculation o
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MILC HISQ 2+1+1 ensembles. All valence quarks HISQ

5 lattice spacings in range 0.15-0.045fm. All with mg/m; = 5, and
3 with physical m; too

Charm mass easy to reach on all ensembles and discretisation
effects in the HISQ action very small. 0.038 < (am.)? < 0.789

Heavier masses on finer ensembles

Cover whole physical ¢> range using twisted b.c.s to give
momentum to daughter s quark

Once we have data on each ensemble, need to extrapolate to the
continuum and B mass
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Convert to z space and ‘
extrapolate in heavy mass too: - ; -
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N—-1
1+1L
fO(q2) = 1 ) agzn’ N :]\?22
My, =0 Tn = Unfo?

Mp\<én My
897 = (S (14 i (S)) 507
H D
7.]kl 1 i 1 .
A val\ 2; o A 2%
> i (G ) () (FER) (e gt
T ™

i,7,k,1=0 ._L‘f
[




ooo

1.0

VYV0000

0.6
0.5
0.4
-0.3 =02 =0.1 0.0 0.1 =03 -0.2 =0.1 0.0 0.1
0.8 0.8
0.6
8
0.4 S 0.4
A
H
*
=
—0.3

—0.2 —0.1 0.0 0.1
z

The z expansion is well behaved in all cases.
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Evaluate at the continuum, physical point and B mass to give premse

form factors across whole ¢® range.
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Heavy-HISQ fits behaviour in My at fixed ¢°. Improvements in
precision, particularly at low ¢?. Agree at D — K end too.
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We can use the form factors to get at the differential decay rate for
B — Kiti:

J[B—KCH ) )
i = F1|Fp(fo, [+, Wi)|" + Fafy

+ T3P (fro fr, W) P + Ful £+ F B (fo, f+, W)

where W; are Wilson coefficients and F; are known functions of
kinematic factors and W; (see 2207.13371). Does not account for cé
resonances.
We can compare this with experiment, in differential form and
integrate to get B = I'rp.
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We can compare dB(BT oK dq’é(e) #e)7) with binned experimental data, _
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Can also integrate across the whole ¢? range to get the branching
fraction. Vetoed region treated the same as experiment. :&.
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We find large tensions in the theoretically clean regions of ¢:

1.1-6 GeV? and 15-22 GeV2. oA
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Our Re = Fp=rere) (including 1% uncertainty for QED on the left)

is much more precise than experiment - does not contribute to tension.
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Experimental bounds on theoretically clean B(B — Kvv) are expected

to improve as Belle II takes more data.
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First fully relativistic calculation of B — K form factors
Reduced uncertainty, particularly at low ¢°

B — K branching fractions show 3 — 50 tension with LHCD in
clean regions

Reduced below 20 with BSM adjustments to Cg and C1g
Uncertainty on RE dominated by experiment and QED
Branching fractions for B — Kvv now with < 10% error

Belle IT promised similar uncertainty at 50 ab™! (arXiv:
2101.11573)

Thanks for listening. Any questions?



