

Progress towards an *improved lattice calculation of Standard Model direct CPviolation in kaon decays*

Christopher Kelly Brookhaven National Laboratory (RBC & UKQCD collaborations)

Wednesday August 10th 2022, Lattice2022, Bonn, Germany

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

<u>University of Bern & Lund</u> Nils Hermansson Truedsson

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Tianle Wang

<u>CERN</u>

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Bigeng Wang (Kentucky) Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Maxwell T. Hansen **Tim Harris** Ryan Hill **Raoul Hodgson** Nelson Lachini Zi Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli **James Richings** Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

<u>Michigan State University</u> Dan Hoying

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

<u>Peking University</u> Xu Feng

<u>University of Regensburg</u> Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Alessandro Barone Jonathan Flynn Nikolai Husung Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

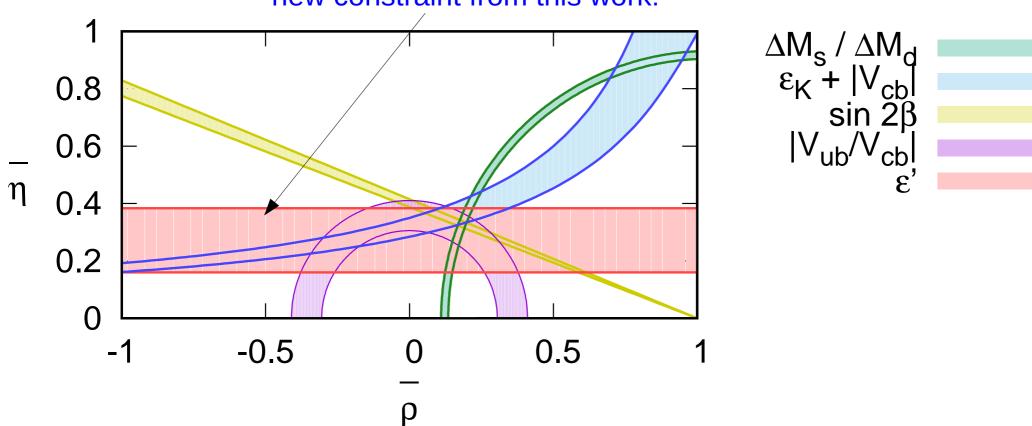
Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Motivation

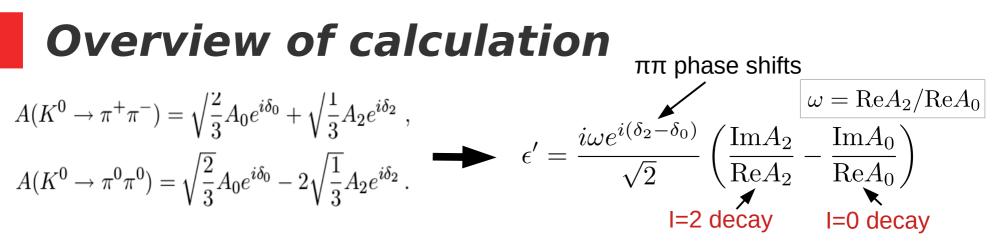
- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in $K^0 \rightarrow \pi\pi$:

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$

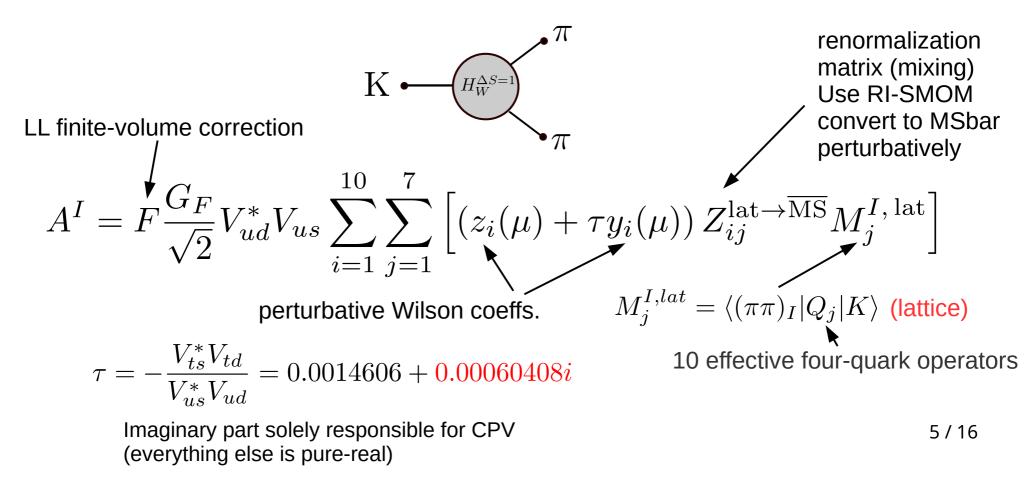

$$\operatorname{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left| \frac{\eta_{00}}{\eta_{\pm}} \right|^2 \right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

measure of direct CPV

measure of indirect CPV


- Small size of ε' makes it particularly sensitive to new direct-CPV introduced by many BSM models.
- Looking for deviations from experiment may help shed light on origin of M/AM asymmetry.

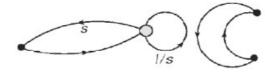
• A Standard Model prediction of ϵ ' also provides a new horizontal band constraint on CKM matrix in ρ - η plane:



new constraint from this work!

- While underlying weak process occurs at high energies $\sim M_w$ =80 GeV, K $\rightarrow \pi\pi$ decays receive large corrections from low-energy hadronic physics O($\Lambda_{_{QCD}}$)~250 MeV.
- Lattice QCD is the only known *ab initio*, **systematically improvable** technique for studying non-perturbative QCD.

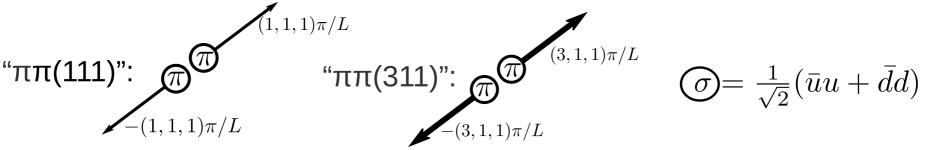
Hadronic energy scale << M_w – use weak effective theory (3 flavors)



I=2 calculation

- A₂ can be measured very precisely using "standard" lattice techniques.
- Most recent result (2015):
 - Computed with large, ~ $(5.5 \text{ fm})^3$ volumes
 - Physical quark masses
 - Two lattice spacings (2.36 GeV and 1.73 GeV) → Continuum limit taken.
- <1% statistical error!
- 10% and 12% total errors on $Re(A_2)$ and $Im(A_2)$ resp.
- Dominant sys. errors due to truncation of PT series in computation of renormalization and Wilson coefficients.

I=0 Calculation


- A_0 is more difficult than A_2 , primarily because I=0 $\pi\pi$ state has vacuum quantum numbers.
- *"Disconnected diagrams"* dominate statistical noise

"type4"

2020 calculation [arXiv:2004.09440]

- Physical quark masses on single, coarse lattice (a⁻¹=1.38 GeV) but with large (4.6 fm)³ physical volume to control FV errors.
- G-parity boundary conditions remove dominant unphysical contribution from stationary $\pi\pi$ state.
- $3x \pi\pi$ operators allow clean isolation of physical decay component.

- Achieved O(10%) statistical precision on both Re(A₀) and Im(A₀)!
- O(20%) systematic errors

Current result for ϵ'

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right]\right\}$$
$$= 0.00217(26)(62)(50)$$
$$\overset{}{\longrightarrow} \operatorname{IB} + \operatorname{EM}$$

Consistent with experimental result:

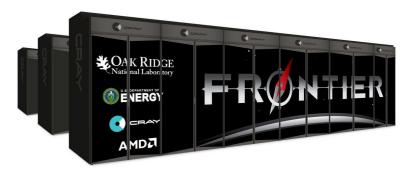
 $\operatorname{Re}(\epsilon'/\epsilon)_{\mathrm{expt}} = 0.00166(23)$

- In order to match precision of experiment we must focus on addressing the systematic errors.
- Primary systematic errors:
 - Wilson coefficients: 12%
 - Isospin breaking + electromagnetic effects: 23%
 - Finite lattice spacing: 12%

Wilson coefficients

- Perturbative Wilson coefficients incorporate high-energy physics and running down to 3-flavor theory.
- Currently computed in MS scheme to NLO [Buchalla *et al.* Rev. Mod. Phys. 68, 1125]
- Matching to renormalied lattice calculation is performed at high energy (4 GeV)
- However PT is still used internally to cross the charm threshold at $m_c=1.3 \text{ GeV}$ significant systematic error $\sim 12\%$
- Progress towards a complete NNLO calculation is underway which can be expected to significantly improve this error.
 [Cerda-Sevilla et al. Acta Phys.Polon.B 4 (2018) 1087-1096]
- We are also investigating a direct non-perturbative calculation of the 4f \rightarrow 3f matching
 - Directly compare 4f and 3f matrix elements on a 3f background gauge field
 - Position space technique reduces mixing with irrelevant operators
 - Preliminary demonstration on 16³x32, a⁻¹=1.78 GeV DWF ensemble shows promising potential in approach [M. Tomii, PoS LATTICE2019 (2020)]
- In longer term a direct 4f calculation will largely eliminate this error but requirement for high statistics, large volume and fine lattice spacing make this presently unfeasible.

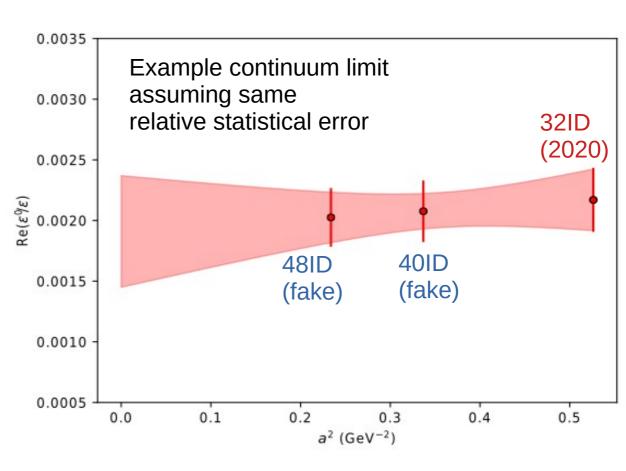
Isospin breaking + EM effects


- Simulation does not include isospin breaking or EM effects.
- Typically these effects are O(1%)
- However $\epsilon' \propto \text{Re}(A_2)/\text{Re}(A_0) \approx 1/22.45$ small due to " Δ I=1/2 rule", a non-perturbative QCD effect.
- Thus relative of EM+IB on A_2 and hence ϵ ' expected O(20%).
- Current best determination uses NLO χ PT and $1/N_c$ expansion, predicts 23% correction \rightarrow separate sys err. [Cirigliano *et al*, JHEP 02 (2020) 032]
- Developing approaches to measuring using lattice QCD. Challenging:
 - Need to reconcile long-distance nature of QED with the local interaction assumptions of the Luscher FV formalism
 - The mixing of final state two-pions by isospin breaking
 - Soft-photon emission introducing additional final states
- Promising start in this direction: A complete demonstration of calculation of (dominant) Coulomb correction to $\pi^+\pi^+$ scattering [Christ *et al.* PRD 106 (2022) 1, 014508]

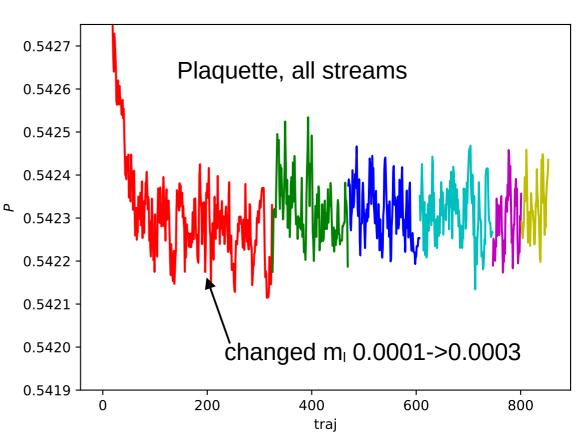
 Additional challenges remain including computing transverse radiation contribution.

Discretization errors

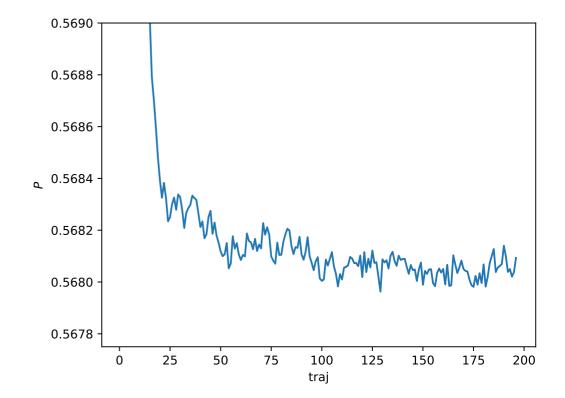
- Primary pure-lattice error (~12%) and "easiest" to address
- Currently estimated using scaling of I=2 ops. but may be significant "error on the error".
- Exploit new exascale and pre-exascale hardware to perform continuum limit.
- Extensive effort in porting measurement code to Intel, NVidia and AMD GPUs almost complete.
- G-parity BCs requires us to also generate new lattices.



Continuum extrapolation lever-arm


- Utilizing and expanding on HMC capacities of Grid framework to run efficiently on GPUs
- Two new lattices:
 - 40ID: 40³x64x12 DWF+ID a⁻¹=1.723 GeV
 - 48ID: 48³x64x12 DWF+ID a⁻¹=2.068 GeV
- Physical pion masses
- GPBC in 3 directions
- Same physical volume

 (4.6 fm)³ →
 ππ energy remains the same as
 before and interaction remains
 physical.


40ID status

- Tuning and running performed on Perlmutter machine.
- Thermalized with 1 initial stream.
- 5 additional streams started from thermalized configs.
- Job time ~6hrs on 32 nodes (128 NVidia A-100 GPUs)
- Severely hampered by Slingshot 10 network
 - Expect significant improvements with new phase 2 (Slingshot 11) network.

48ID status

- Tuning progress hampered by wall-clock time limits on Perlmutter and weak network
- Expect significant improvement with Slingshot 11 network

$K \rightarrow \pi \pi$ without G-parity

- Independent calculation of ε' using multiple operators to extract on-shell matrix elements as excited-state contributions in a periodic lattice is well under way.
 - > Avoid complications of using G-parity BCs
 - > Uses existing MDWF+I ensembles with physical pion masses
 - > 2 lattice spacings allowing continuum limit

[See Masaaki Tomii's talk - next!]

Conclusions

- Result for ε' consistent with experimental value but total error is still ~3.6x that of experiment.
- ε' remains a promising avenue to search for new physics, but greater precision is required.
- RBC & UKQCD are working to improve all 3 primary systematic errors:
 - Attempt to address EM+IB errors through lattice calculation (hard!).
 - Investigating direct lattice calculation of 3f-4f matching in Wilson coefficients.
 - (Potential for NNLO calculation of EM+IB in near future may reduce urgency.)
 - Addressing discretization error by introducing two finer lattices
 - Independent calculation with different systematics using periodic BCs.