8 August 2022 14:20 Hörsaalzentrum Poppelsdorf, Bonn

Calculation of Hyperon Transition Form Factors from the Feynman-Hellman method

Mischa Batelaan

K. U. Can, R. Horsley, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, H. Stüben, R. D. Young, J. M. Zanotti

QCDSF-UKQCD-CSSM Collaboration

PDG Review of particle physics 2020

- SM requires unitarity: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- |Vus | can be constrained by
 - (Semi-) leptonic Kaon decays
 - Semi-leptonic hyperon decays
- Transition matrix element for semi-leptonic hyperon decay:

$$T = \frac{G_F}{\sqrt{2}} V_{us} \Big[\langle B' | \bar{u} \gamma_\mu \gamma^5 s | B \rangle - \langle B' | \bar{u} \gamma_\mu s | B \rangle \Big] \bar{l} \gamma^\mu (1 - \gamma^5) \nu_l$$
 From experimental Axial-vector Vector decay widths

 Lattice QCD determinations can improve on phenomenological form factor values

Form Factors

$$\langle B'|\bar{u}\gamma_{\mu}s|B\rangle = \gamma_{\mu}f_{1}^{BB'}(Q^{2}) + \sigma_{\mu\nu}q_{\nu}\frac{f_{2}^{BB'}(Q^{2})}{M_{B} + M_{B'}} - iq_{\mu}\frac{f_{3}^{BB'}(Q^{2})}{M_{B} + M_{B'}}$$

- Last term is zero for B=B' due to the Conserved Vector Current (CVC)
- Mainly interested in $f_1(0)$ for constraining V_{us} .
- Usually calculated by using three-point correlation functions
 - Need a lot of configurations to keep signal-to-noise ratio high and achieve ground state dominance
- Feynman- Hellmann approach offers an alternative which relies only on two-point correlation functions

$\Sigma^- \to n$ Transition

• Consider the action: $S = S_g + \int_x (\bar{u}, \bar{s}) \begin{pmatrix} D_u & -\lambda \mathcal{T} \\ -\lambda \mathcal{T}' & D_s \end{pmatrix} \begin{pmatrix} u \\ s \end{pmatrix} + \int_x \bar{d} D_d d$ where $\mathcal{T}(x, y; \vec{q}) = \gamma e^{i\vec{q}\cdot\vec{x}} \delta_{x,y}$

Construct a matrix of correlation functions:

$$C_{\lambda B'B} = \begin{pmatrix} C_{\lambda \Sigma \Sigma} & C_{\lambda \Sigma N} \\ C_{\lambda N \Sigma} & C_{\lambda N N} \end{pmatrix}_{B'B}$$

 This can be diagonalised and the energies related to the matrix element

$$\Delta E_{\lambda \Sigma N} = \sqrt{\left(E_N(\vec{q}) - M_{\Sigma}\right)^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$$

$$\Sigma^- \to n$$
 Transition

$$C_{\lambda B'B} = \begin{pmatrix} C_{\lambda \Sigma \Sigma} & C_{\lambda \Sigma N} \\ C_{\lambda N \Sigma} & C_{\lambda N N} \end{pmatrix}_{B'B}$$

Each correlator is built from a Green's function:

$$\begin{pmatrix} G_{uu} & G_{us} \\ G_{su} & G_{ss} \end{pmatrix} = \begin{pmatrix} (\mathcal{M}^{-1})_{uu} & (\mathcal{M}^{-1})_{us} \\ (\mathcal{M}^{-1})_{su} & (\mathcal{M}^{-1})_{ss} \end{pmatrix}$$

• Where: $G^{(uu)} = (1 - \lambda^2 D_u^{-1} \mathcal{T} D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5)^{-1} D_u^{-1}$ $G^{(ss)} = (1 - \lambda^2 D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5 D_u^{-1} \mathcal{T})^{-1} D_s^{-1}$

Problem: inversion within another inversion

$$G^{(us)} = \lambda D_u^{-1} \mathcal{T} G^{(ss)},$$

$$G^{(su)} = \lambda D_s^{-1} \gamma_5 \mathcal{T}^{\dagger} \gamma_5 G^{(uu)}$$

Iterative Green's functions

- We can expand the Green's functions for small lambda
- Will give the exact result as n goes to infinity.
- We will consider up to order $\mathcal{O}(\lambda^4)$
- This allows changing the value of lambda after the inversions!

$$G_3^{(us)}$$
 =

Kinematics

- Choose the Sigma to be at rest and change the momentum of the nucleon
- Choose the operator to be the vector current γ_4
- For hyperons with quasi-degenerate energies the shift due to a perturbation in the action lambda is

$$\Delta E_{\lambda \Sigma N} = \sqrt{(E_N(\vec{q}) - M_{\Sigma})^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$$

- When the energy of the nucleon equals the mass of the Sigma, this will be linear in lambda.
 - How far from the degenerate energy point can we make this work?
 - At $Q^2=0$?

(Partially) Twisted Boundary Conditions

Momentum on the lattice is quantised

 $Q^2 = -(M_{\Sigma} - E_N(\vec{q}))^2 + \vec{q}^2$

- how do we get to the energy-degenerate point?
- Twisted boundary conditions add a complex phase to the boundary conditions
 - Gives lattice correlators any momentum

$$q(\vec{x} + N_s \vec{e}_i, t) = e^{i\theta_i} q(\vec{x}, t)$$

- Using twisted boundary conditions we can tune the nucleon energy to be very close to the mass of the Sigma baryon.
- Can also be used to get form factors at exactly Q²=0

Generalized EigenValue Problem (GEVP)

• Diagonalise the matrix
$$C_{\lambda B'B}=\begin{pmatrix} C_{\lambda\Sigma\Sigma}&C_{\lambda\Sigma N}\\ C_{\lambda N\Sigma}&C_{\lambda NN} \end{pmatrix}_{B'B}$$

- Gives two eigenvectors and eigenvalues
- Eigenvalues related to the energy
- Use the eigenvectors to project out two correlation functions:

$$C_{\lambda}^{(i)}(t) = v^{(i)\dagger}C_{\lambda}(t)u^{(i)}, \quad i = \pm$$

 Take the ratio of the two correlators and fit to the energy shift ΔE .

$$R_{\lambda}(t; \vec{0}, \vec{q}) = \frac{C_{\lambda}^{(-)}(t; \vec{0}, \vec{q})}{C_{\lambda}^{(+)}(t; \vec{0}, \vec{q})} \stackrel{t \gg 0}{\propto} e^{-\Delta E_{\lambda}(\vec{0}, \vec{q})t}$$

GEVP Stability

Stable under GEVP parameters?

- Do the GEVP for many value of t_0 and Δt
- Calculate the value of $\Delta E(c^+,c^-)$ from the eigenvalues
- Compare with ΔE from the fit to the ratio of correlators
- For each Δt we show results from $t_0=1-8$

GEVP depends on two parameters ($t_0 \& \Delta t$):

$$C_{\lambda}^{-1}(t_0)C_{\lambda}(t_0 + \Delta t)e^{(i)} = c^{(i)}e^{(i)}$$

Result from GEVP are stable in range $\Delta t \ge 4$ and $t_0 \ge 6$

Lattice details

- 32³x64 lattice size
- Lattice spacing a=0.074fm
- $N_f = 2 + 1$, O(a)-improved clover Wilson fermions
- Up and down quark are degenerate
- O(500) configurations used for each choice of momentum

run#	θ_2/π	$ec{q}^{2}$	E_N	$M_{\Sigma} - E_N$	$Q^2[\mathrm{GeV}^2]$
1	0.0	0.0	0.424(11)	0.0366(33)	-0.0095
2	0.448	0.0019	0.429(10)	0.0351(35)	0.0048
3	1	0.0096	0.437(10)	0.0301(42)	0.0620
4	1.6	0.0247	0.450(12)	0.0182(57)	0.1732
5	2.06	0.0408	0.462(12)	0.0030(69)	0.2901
6	2.25	0.0488	0.469(13)	-0.0037(78)	0.3472

ΔE as a function of λ

 $R_{\lambda}(t; \vec{0}, \vec{q}) = \frac{C_{\lambda}^{(-)}(t; \vec{0}, \vec{q})}{C_{\lambda}^{(+)}(t; \vec{0}, \vec{q})} \overset{t \gg 0}{\propto} e^{-\Delta E_{\lambda}(\vec{0}, \vec{q})}$

- Iterative Method: higher orders in lambda increase the range over which our approximation holds
- We want to fit in the region where the dependence is linear
- Choose the region where the two highest order results agree
 - The expansion in λ holds here

Matrix element fit

 $\Delta E_{\lambda \Sigma N} = \sqrt{(E_N(\vec{q}) - M_{\Sigma})^2 + 4\lambda^2 \left| \langle N(\vec{q}) | \bar{u} \gamma_4 s | \Sigma(\vec{0}) \rangle \right|^2}$

- Fit to data up to $\mathcal{O}(\lambda^4)$
- Values of ΔE for all lambda are very correlated
- We fit to the square of ΔE to ensure the values are positive
- We use three fit points which span the region where the dependence on lambda is linear

Fit Stability

We fit over multiple ranges of lambda using three points for each fit

The results stabilise when the fit extends up to lambda>0.03

Matrix element results

Three-point function results are preliminary, using one source-sink separation and using higher statistics

$$\langle N(\vec{q}) | \bar{u}\gamma_4 s | \Sigma(\vec{0}) \rangle = \sqrt{2M_{\Sigma}(E_N(\vec{q}) + M_N)}$$

$$\left(f_1^{\Sigma N}(Q^{f2}) + \frac{E_N(\vec{q}) - M_N}{M_N + M_{\Sigma}} f_2^{\Sigma N}(Q^2) + \frac{E_N(\vec{q}) - M_{\Sigma}}{M_N + M_{\Sigma}} f_3^{\Sigma N}(Q^2)\right)$$

Avoided level crossing

Eigenvectors

 As in Roger's presentation, the eigenvectors show the mixing between the states once the interaction is turned on

$$\vec{e}^{(\pm)} = \begin{pmatrix} e_1^{(\pm)} \\ e_2^{(\pm)} \end{pmatrix}$$

Conclusion

- The Feynman-Hellman method can be used to calculate hyperon transition form factors
- Only requires one Euclidean time parameter to be optimised to extract the ground state.
- Using multiple different operators will allow for the extraction of separate form facors
- Method should be tested on lattices with larger splittings between the light and strange quarks

Extra: $Q^2=0$ results

- Expansion in λ breaks down earlier
- Choose smaller λ values for the fit
- Still possible to fit and get a good result
- Higher orders could be required when the quark mass splitting is increased on other lattice ensembles.

