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Phenomenological 
motivations



The emission of a real hard photon removes the  helicity suppression (mℓ /MB)2

This is the simplest process that probes (for large ) the first inverse moment of the 
B-meson LCDA

Eγ

1
λB(μ)

= ∫
∞

0

dω
ω

ΦB+(ω, μ)

 is an important input in QCD-factorization predictions for non-leptonic B decays 
but is poorly known
λB

B� ! `�⌫̄�

• Adding a (hard) photon removes the (m`/mB)
2
helicity suppression.

• This is the simplest decay that (for large E�) probes the first inverse

moment of the B-meson light-cone distribution amplitude,

1/�B =

Z 1

0

�B+(!)
!

d!.

�B is an important input in QCD-factorization predictions for nonleptonic

B decays and is poorly known.

[See, for example, M. Beneke, V. Braun, Y. Ji, Y.-B. Wei, arXiv:1804.04962/JHEP2018;

M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

• Belle: B(B
�
! `�⌫̄�, E� > 1 GeV) < 3.0⇥ 10

�6
SM: O(10

�6
)

[arXiv:1810.12976/PRD2018]

ν̄ℓ

M. Beneke, V. M. Braun, Y. Ji, Y.-B. Wei, 2018

Radiative corrections to leptonic B-meson decays

B− → ℓ−ν̄ℓγ

Belle 2018:                    ℬ(B− → ℓ−ν̄ℓγ, Eγ > 1 GeV) < 3.0 ⋅ 10−6 λB > 0.24 GeV
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FIG. 1: Feynman diagrams that contain the power-enhanced
electromagnetic correction. Symmetric diagrams with order
of vertices on the leptonic line interchanged are not displayed.

in the effective weak interaction Lagrangian

L∆B=1 =
4GF√

2

10
∑

i=1

CiQi + h.c. , (7)

with the effective operators Qi as defined in Ref. [13].
The effective short-distance coefficients [14, 15]

Ceff
7 = C7 −

C3

3
− 4C4

9
− 20C5

3
− 80C6

9
(8)

Ceff
9 (q2) = C9 + Y (q2) (9)

account for the quark-loop induced contributions. The
relevant Feynman diagrams are shown in Fig. 1.

An important observation on Eq. (5) is that the non-
perturbative strong-interaction physics is no longer con-
tained in the B-meson decay constant fBq

alone. Rather,
the exchange of an energetic photon between the lepton
pair and the spectator antiquark q̄ probes correlations
between the constituents in the B meson separated at
large but light-like distances. The corresponding strong-
interaction physics is parameterized by the inverse mo-
ment of the B-meson light-cone distribution amplitude
(LCDA) λB , introduced in Ref. [16],

1

λB(µ)
≡

∫

∞

0

dω

ω
φB+(ω, µ), (10)

σn(µ)

λB(µ)
≡

∫

∞

0

dω

ω
lnn

µ0

ω
φB+(ω, µ) (11)

and the first two inverse-logarithmic moments, which we
define as in Ref. [12] with fixed µ0 = 1 GeV. These pa-
rameters have frequently appeared in other exclusive B-
meson decays. In the numerical analysis below we shall
adopt [12] λB(1 GeV) = (275 ± 75) MeV, σ1(1 GeV) =
1.5 ± 1, and σ2(1 GeV) = 3 ± 2. The non-locality of
q̄b annihilation due to the photon interaction removes a
suppression factor of the local annihilation process. The

enhancement of the electromagnetic correction by a fac-
tor mB/ΛQCD in Eq. (5) arises from

mB

∫

∞

0

dω

ω
φB+(ω) ln

k ω ∼ mB

λB
× σk . (12)

There is a further single-logarithmic enhancement of or-
der lnmbΛQCD/m2

µ ∼ 5 for the Ceff
9 term, and even a

double-logarithmic enhancement of the Ceff
7 term.

We obtained Eq. (5) in two different ways. First,
from a standard computation of QED corrections to
the four-point amplitude with two external lepton lines,
one heavy-quark and one light-quark line, and second,
from a method-of-region computation [17] in the frame-
work of soft-collinear effective theory (SCET) [18, 19].
The second method is instructive as it reveals the ori-
gin of the enhancement from the hard-collinear virtuality
O(mbΛQCD) of the spectator-quark propagator. A fur-
ther single-logarithmic enhancement arises from the con-
tribution of both hard-collinear and collinear (virtuality
Λ2
QCD ∼ m2

!) photon and lepton virtuality. The dou-

ble logarithm in the Ceff
7 term is caused by an endpoint-

singularity as u → 0 in the hard-collinear and collinear
convolution integral for the box diagrams, whereby the
hard photon from the electromagnetic dipole operator
becomes hard-collinear. The singularity is cancelled by
a soft contribution, where the leptons in the final state
interact with each other through the exchange of a soft
lepton. The relevance of soft-fermion exchange is inter-
esting by itself since it is beyond the standard analysis of
logarithmically enhanced terms in QED. We shall there-
fore return to a full analysis within SCET in a detailed
separate paper.

We now proceed to the numerical evaluation of the
power-enhanced QED correction. Let us denote mB

times the curly bracket in Eq. (5) by ∆QED. Since the
scalar %̄% term in the amplitude A does not interfere with
the pseudoscalar tree-level amplitude, the QED correc-
tion can be included in the expression for the tree-level
Bs → %+%− branching fraction [26],

τBq
m3

Bq
f2
Bq

8π
|N |2 m2

!

m2
Bq

√

1− 4m2
!

m2
Bq

|C10|2 , (13)

by the substitution

C10 → C10 +
αem

4π
Q!Qq∆QED . (14)

We calculate the Wilson coefficients Ci(µb) entering
∆QED at the scale µb = 5GeV at next-to-next-to-leading
logarithmic accuracy in the renormalization-group evolu-
tion from the electroweak scale, evaluate the convolution
integrals in Eq. (5) with mb = 4.8GeV, and express them
in terms of λB(1GeV), σ1(1GeV), σ2(1GeV) specified
above. We then find

∆QED = (33− 119) + i (9− 23) (% = µ) , (15)

where the large range is entirely due to the independent
variation of the poorly known parameters of the B-meson
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Bq → ℓ+ℓ−(γ)

Enhancement of the virtual corrections by a factor  and by large logarithmsMB /ΛQCD

The real photon emission process is a clean probe of NP: sensitiveness to C9, C10, C7

M. Beneke, C. Bobeth, R. Szafron, 2019

QCD sum rules in HQET:    λB(1 GeV) = 0.46 (11) GeV



Lattice calculation of 
H → ℓνℓγ



Hadronic Tensor and Form Factors

J
em
µ =

P
q
eqq̄�µq, J

weak
⌫ = ū�⌫(1� �5)b

Tµ⌫ = �i

Z
d4x e

ip� ·x h0|T
�
J
em

µ (x)Jweak⌫ (0)
� ��B�(~pB)

↵

= ✏µ⌫⌧⇢p
⌧
�v

⇢
FV + i

⇥
� gµ⌫(v · p�) + vµ(p�)⌫

⇤
FA � i

vµv⌫

(v · p�)
mB fB

+ (p�)µ-terms

FA,SD = FA + fB/E
(0)

� , E
(0)

� = pB · p�/mB

Goal: Calculate FV ,FA,SD as a function of E (0)

�
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Hadronic tensor and form factors

5

= εμντρpτ
γ vρFV+i [−gμν(pγ ⋅ v) + vμ(pγ)ν] FA−i

vμvν

pγ ⋅ v
mH fH

Tμν = − i∫ d4x eipγ⋅x ⟨0 |T (Jem
μ (x) Jweak

ν (0)) |H( ⃗p H)⟩

+ (pγ)μ − terms

2
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FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the

charged lepton in the final state (right panel).

that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)

Jem
μ

Jweak
ν

H H

(pH = mHv)

E(0)
γ = pγ ⋅ vFA = FA,SD+(−Qℓ fH /E(0)

γ ),

Jem
μ = ∑

q

Qq q̄γμq

Jweak
ν = q̄1γν(1 − γ5) q2

Euclidean correlation function

C3,µ⌫(tem, tH) =

Z
d
3
x

Z
d
3
y e

�i~p� ·~xe i~pH ·~yhJemµ (tem,~x)J
weak

⌫ (0)�†
H
(tH ,~y)i

�†
H
⇠ Q̄�5u

I
<
µ⌫(T , tH) =

Z
0

�T

dteme
E�temC3,µ⌫(tem, tH)

I
>
µ⌫(T , tH) =

Z
T

0

dteme
E�temC3,µ⌫(tem, tH)

Iµ⌫(T , tH) = I
<(T , tH) + I

>(T , tH)

Show relation between Iµ⌫(T , tH) and Tµ⌫

! compare spectral decompositions of both time orderings of Iµ⌫ and Tµ⌫

4 / 18

( * all times are now Euclidean )

ϕ†
H = − q̄2γ5q1

safe analytic continuation from Minkowsky to Euclidean spacetime, because of 
the absence of intermediate states lighter than the pseudoscalar meson 
C. Kane et al., arXiv:1907.00279, RM123 & Soton Coll., arXiv:2006.05358



Euclidean spectral decomposition of I>µ⌫

Time ordering: tem > 0

T
>
µ⌫ = �

X

n

h0| Jemµ (0) |n(~p�)i hn(~p�)| Jweak⌫ (0) |H(~pH)i
2En,~p� (E� � En,~p� )

I
>
µ⌫(tH ,T ) =

Z
T

0

dtem e
E�temCµ⌫(tem, tH)

= �
X

m

e
EmtH

hm(~pH)|�†
H
(0) |0i

2Em,~pH

⇥
X

n

h0| Jemµ (0) |n(~p�)i hn(~p�)| Jweak⌫ (0) |m(~pH)i
2En,~p� (E� � En,~p� )


1� e

(E��En,~p� )T

�
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tH ! �1 to achieve
ground state saturation

T ! 1 to remove unwanted exponentials
that come with intermediate states
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Calculating Iµ⌫(T , tH)

Tµ⌫ = lim
T!1

lim
tH!�1

�2EHe
�EHtH

hH(~pH)|�†
H
|0i

Z
T

�T

dtem e
E�temC3,µ⌫(tem, tH)

| {z }
Iµ⌫(T ,tH)

Two methods to calculate Iµ⌫(T , tH):

1: 3d (timeslice) sequential propagator
through �†

H
! calculate C3,µ⌫(tem, tH)

on lattice, fixed tH get all tem for free

2: 4d sequential propagator through J
em
µ

! calculate Iµ⌫(T , tH) on lattice, fixed
T get all tH for free
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noise source
seq. prop

seq. source

RM123 & Soton Coll., arXiv:2006.05358: Set T = NT / 2 and fit 

to constant in tH where data has plateaued

source

For a comparison of 3d vs 4d methods see arXiv:2110.13196



 random wall sources & randomly placed point sourcesℤ2

Simulation details

25 configurations, AMA with 16 sloppy and 1 exact samples per config

Local electromagnetic current + mostly non-perturbative RCs

Two datasets:  or Jweak(0) Jem(0)

For point sources use translational invariance to fix em/weak operator at  0

use a “sine-cardinal reconstruction” to generate data for arbitrary photon 
momenta (only exp. small FVEs are introduced)

 DWF, RBC/UKQCD ensemble  MeV,   fm, 
charm valence quarks        Möbius DW with “stout” smearing
Nf = 2 + 1 Mπ = 340 (1) a ≃ 0.11

Disconnected diagrams are neglected

5

y

0 t

Ai

V i

P

�k

�p � �k

�p

T
2

y

TtT
2

Ai

V i

P

�k

�p � �k

�p

FIG. 2: Feynman’s diagrams representing the correlator C↵r
W (t, T/2;p,k) used in the numerical simulations to extract the form–factors,

see appendix B. The incoming meson is interpolated at fixed spatial momentum p by the pseudoscalar operator P placed at time 0,

the weak current is local and is placed at the generic time t while the photon propagator is interpolated by a wall-source at T/2 with

momentum k and there is a four–dimensional integral at y, 0  y0  T . The right-panel represents the time-reversed process and, by

periodicity, is equivalent to the left-panel. On a finite time lattice it icorresponds to the leading exponential behaviour of the correlator

when t > T/2.

2⇡✓0
L

2⇡✓t
L

2⇡✓s
L

FIG. 3: The diagram on the left represents the contributions to the correlators and, consequently, to the form–factors associated with

the possibility that the photon is emitted by sea–quarks. In our numerical simulations we have been working within the so–called

electroquenched approximation in which the sea–quarks are electrically neutral. In practice this means that in our numerical results we

have neglected the quark–disconnected contributions represented in the the left panel. The diagram on the right explains our choice of

the spatial boundary conditions. By treating the two propagators attached to the electromagnetic current (blue and red lines) as two

di↵erente flavours, having the same mass and electric charge but di↵erent boundary conditions, we managed to choose arbitrary values

for the meson and photon spatial momenta.

correlator originating from the possibility that the external real photon is emitted from sea–quarks. In this work we
have been using the so–called electroquenched approximation in which sea–quarks are electrically neutral. In practice
this means that we have neglected the contributions represented in the left–panel of Figure 3.

The quark–connected diagram in the right–panel of Figure 3 has been shown to explain the strategy used to set the
values of the spatial momenta. We exploited the fact that, by working within the electroquenched approximation,
i.e. in absence of the contributions illustrated in the left–panel of the figure, it is possible to choose arbitrary values
of the spatial momenta by using di↵erent spatial boundary conditions [16] for the quark fields. More precisely, we
set the boundary conditions for the “spectactor” quark, corresponding to the black line in the diagram, such that
 (x+ k̂L) = exp(2⇡ik̂ ·✓s/L) (x). Then we treated the two propagators that are connected with the electromagnetic

C3,μν = ∫ d3x d3y e−i ⃗p γ⋅ ⃗x ⟨Jem
μ (tem, ⃗x )Jweak

ν (0)ϕ†
H(tH, ⃗y )⟩ , several ⃗p H = 0 ⃗p γ

8



Improved form factors estimators
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Cp( ⃗p γ = ⃗p ⋆
γ , t)

Cz( ⃗p γ = ⃗p ⋆
γ , t)

apDs
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p⋆
γ =

2π
L

(0.0, 0.0, 0.0)

F
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k
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SD
(T

,t H
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Improved form factors estimators [2]
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Include terms to fit
(1) unwanted exponential from first intermediate state 
(2) first excited state

Fit form factors  and  directly instead of FV FA,SD Iμν

Fweak
> (tH, T ) = F> + B>

F (1+B>
F,exce

ΔEtH) e(Eγ−E>)T+C>
F eΔEtH

Fit form: 3d method

11

tH < 0 < tW

tH < tW < 0tH < 0 < tem

tH < tem < 0

Fweak
< (tH, T ) = F< + B<

F (1+B<
F,exce

ΔE(T+tH)) e−(Eγ−EH+E<)T+C<
F eΔEtH

} }}

Fem
> (tH, T ) = F< + B<

F [1+B<
F,exc

Eγ+E<−(ΔE+EH)
Eγ+E<−EH

eΔEtH] e−(Eγ−EH+E<)T+C̃<
FeΔEtH

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Fit form factors FV and FA,SD directly instead of Iµ⌫

Time ordering tem < 0:

F
<(tH ,T ) = F

<+B
<
F
(1+B

<
F ,exc

z }| {
e
�E(T+tH) )

z }| {
e
�(E��EH+E

<
)T +C

<
F

z }| {
e
�EtH

⌅ fit parameters

Only have three values of tH , fitting multiple exponentials not possible
! Determine �E from the pseudoscalar two-point correlation function
! use result as Gaussian prior in form factor fits

Look at preliminary data and fit results for K� ! �`�⌫̄`
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two
ΔE

Fem
< (tH, T ) = F> + B>

F [1+B>
F,exc

Eγ−E>

Eγ−E> + ΔE
eΔE(T+tH)] e(Eγ−E>)T+C̃>

FeΔEtH
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: 3d methodDs → ℓνℓγ
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apγ = 2πa /L (0.0, 0.0, 0.1)
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: 3d methodDs → ℓνℓγ
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NP subtraction of IR-divergent discretization effects

14

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x∞

°0.10

°0.05

0.00

0.05

0.10

F
A

,S
D

new
old

We use

to subtract the pt-like contribution
∫ d3xd3y(e−i ⃗p γ⋅ ⃗x −1)⟨Jem

i (x)JA
i (0)ϕ†

H(y)⟩

Blue data: improved subtraction of pt-like contribution

FA,SD = FA − (−Qℓ
fH
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 artifacts first observed in arXiv:2006.05358𝒪(a2/xγ)

Ds → ℓνℓγ
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: results (3d method)Ds → ℓνℓγ
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FIG. 10: The form factors FA(x�) (upper) and FV (x�) (lower) of the Ds meson as a function of

x� at fixed lattice spacing (a = 0.0815 fm) for the ensemble B25.32 [15]. The full blue and shaded

orange bands are the results of the fits with the polynomial or pole formulae given in Eqs. (35)

and (36) respectively.

In this first study, we only have results for the D(s) mesons in the range 0  x�  0.4, corre-

sponding to E� . 400MeV in the rest frame of the hadron. In Fig. 10 we give the results for the

form factors of the Ds meson, FA(x�) and FV (x�), at a = 0.0815 fm. The full blue and shaded

orange bands are the results of the fits with the polynomial or pole formula given in Eqs. (35)

and (36) respectively. Since the lattice spacing is fixed, the coe�cients d̃0,1 are not included in the

fit. We see that the both the fits give a good description of our results in the region where we have

data, but di↵er significantly for x� � 0.4. This means that, although both the linear and the pole

fits describe accurately the form factors in the region in which we have data, it is not reliable to use

these fits in the region x� � 0.4. In our future investigations we plan to provide non-perturbative

data for the form factors in the full kinematical range 0  x�  1�m2
`
/m2

D(s)
.

In Fig. 11 we present the values of the form factors FA(x�) (upper) and FV (x�) (lower) for the

Ds meson as a function of x� . We show the data obtained at the three di↵erent values of the lattice

spacing, together with fits using Eq. (35) at each value of the lattice spacing. The orange bands

RM123 & Soton Coll., arXiv:2006.05358

sign: different FFs 
parameterization

preliminary

fm mπ ≃ 260 MeV
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: results (3d method) [2]Ds → ℓνℓγ
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Fit: 
Axγ

1 − B(1 − xγ)

preliminary
Radiative leptonic decays of D±

(s), K
±, and ⇡± mesons

• D
+

s ! e
+⌫�: B(E� > 10 MeV) < 1.3⇥ 10

�4
SM: O(10

�4
)

[BESIII Collaboration, arXiv:1902.03351]

• D
+
! e

+⌫�: B(E� > 10 MeV) < 3.0⇥ 10
�5

SM: O(10
�5

)

[BESIII Collaboration, arXiv:1702.05837/PRD2017]

• K
�
! e

�⌫̄�, K
�
! µ�⌫̄�, ⇡�

! e
�⌫̄�, ⇡�

! µ�⌫̄�:

The partial branching fractions, photon-energy spectra, and angular

distributions are known from multiple experiments.

Contributions from “inner bremsstrahlung,” “structure-dependent,” and

interference terms are distinguished.

[M. Bychkov, G. D’Ambrosio (Particle Data Group), “Form Factors for Radiative Pion and Kaon Decays,”

Section 68 of the Review of Particle Physics, 2018]

Fit Ansatz inspired by the phenomenological analysis of arXiv:0907.1845
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: resultsK → ℓνℓγ
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9 + Lr

10)/fK
J. Bijnens et al., 1993
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Conclusions and future perspectives

With moderate statistics we are able to provide rather precise, first-principles 
results for the form factors in the full kinematical (photon-energy) range

Lattice calculations of radiative leptonic heavy-meson decays at high photon 
energy could provide useful information to better understand the internal 
structure of hadrons 

The form factors for real emissions are accessible from Euclidean correlators

We compared analysis methods using 3d and 4d data. 3d method results in 
smallest statistical uncertainties. A method paper will appear very soon

The analysis on a variety of ensembles with  is in progress to reach 
the continuum limit. To extend the study to B-meson decays we will take 
advantage of new RBC/UKQCD ensembles at 

mπ ≃ mphys
π

a−1 ≈ (3.5, 4.5) GeV



48I 64I 96I

L3
· T/a4 483 · 96 643 · 128 963 · 192

� 2.13 2.25 2.31

aml 0.00078 0.000678 0.0054

amh 0.0362 0.02661 0.02132

↵ 2.0 2.0 2.0

a�1 (GeV) 1.730(4) 2.359(7) ⇡ 2.8

a (fm) 0.1141(3) 0.0837(3) ⇡ 0.071

L (fm) 5.476(12) 5.354(16) ⇡ 6.8

Ls/a 10 12 12

m⇡ (MeV) 139.2(4) 139.2(5) ⇡ 135

m⇡L 3.863(6) 3.778(8) ⇡ 4.7

Nconf 120 160 20

Table 1: Parameter values for the ensembles produced by the RBC/UKQCD
Collaboration with Nf = 2 + 1 domain wall fermions and Iwasaki gauge ac-
tion [17]: volume L3

· T in lattice units; �; bare sea-quark masses aml (light),
amh (s sector); Möbius scaling factor ↵; lattice spacing; spatial lattice size L
in physical units; extra fifth-dimensional extent Ls; simulated pion masses m⇡

and number of gauge configurations Nconf . With respect to Ref. [17] we use the
zMöbius DWF variant of the gauge ensemble 48I to reduce Ls from the value
of 24, used in when generating the ensemble, to Ls = 10, further accelerating
the Dirac inversions and minimizing the computational cost. In addition, the
gauge ensemble, 96I, has been added to improve the investigation of discretiza-
tion and finite-volume e↵ects. The parameters of this ensemble are currently
being measured and precise estimates will be available by the time the proposed
computation starts. By adopting the values of the e.m. shifts of the quark masses
computed in Ref. [25] within the finite-volume QEDL prescription [26], we are
able to calibrate our lattices such that the bare light and strange-quark masses
are tuned to produce a pion mass of 135.0 MeV and a kaon mass of 495.7 MeV.

of this eigenvector method allows for a reduction of memory cost by a factor of
30 for the largest 963 ⇥ 192 physical pion ensemble.

We point out that AMA helps us in improving the statistical precision of our
correlation functions. This is accomplished by computing correlators originating
from many time slices spaced throughout the temporal extent of the lattice. Our

9
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Given the present exper. and theor. (LQCD) accuracy,  an important source of 
uncertainty are long distance electromagnetic and SU(2)-breaking corrections

M.Knecht et al., 2000;   V.Cirigliano and H.Neufeld, 2011

δEM = −  0.0069  (17)

At leading order in ChPT both δEM and δSU(2) can be expressed in 
terms of physical quantities (e.m. pion mass splitting, fK/fπ, …)

25% of error due to higher orders       0.2% on ΓKl2/Γπl2 

For ΓKl2/Γπl2

J.Gasser and H.Leutwyler, 1985;   V.Cirigliano and H.Neufeld, 2011

25% of error due to higher orders           
       0.1% on ΓKl2/Γπl2 

Electromagnetic and isospin-breaking effects

K/π

K π

Γ K + → ℓ+ν ℓ γ( )( )
Γ π + → ℓ+ν ℓ γ( )( ) =

Vus
Vud

fK
fπ

⎛

⎝⎜
⎞

⎠⎟

2 M
K + 1−mℓ

2 M
K +
2( )2

Mπ + 1−mℓ
2 Mπ +

2( )2
1+δ EM +δ SU 2( )( )

Γ K +,0 → π 0,−ℓ+ν ℓ γ( )( ) = GF
2M

K + ,0
5

192π 3 C
K + ,0
2 Vus f+

K 0π −

0( )
2
IKℓ
0( )SEW 1+δ EM

K + ,0ℓ +δ SU 2( )
K + ,0π( )

δ SU 2( ) =
f
K + fπ +

fK fπ

⎛
⎝⎜

⎞
⎠⎟

2

−1= −0.0044 12( )

ChPT is not applicable to D and B decays



By setting , at fixed meson mass, the form factors depend on  only. 
Moreover, by choosing a physical basis for the polarization vectors, i.e. , 
one has

p2
γ = 0 pH ⋅ pγ

ϵr(pγ) ⋅ pγ = 0

 Real photon emission amplitude

In the case of off-shell photons ( )        expressed in terms of 
4 form factors

p2
γ ≠ 0 Γ[H → ℓνℓℓ+ℓ−]

For large photon energies and in the B-meson rest frame the form factors 
can be written as

ū

ū

b

p

W

�

Figure 1. Leading contribution to B ! �`⌫`.

For large photon energies the form factors can be written as [9]

FV (E�) =
eufBmB

2E��B(µ)
R(E� , µ) + ⇠(E�) +�⇠(E�) ,

FA(E�) =
eufBmB

2E��B(µ)
R(E� , µ) + ⇠(E�)��⇠(E�) . (2.7)

The first term is equal in both expressions and represents the leading-power contribution

in the heavy-quark expansion (HQE). It originates only from photon emission from the

light spectator quark in B meson (Fig. 1). In the above, fB is the decay constant of B

meson, and the quantity �B is the first inverse moment of the B-meson LCDA,

1

�B(µ)
=

Z 1

0

d!

!
�+(!, µ) . (2.8)

The factor R(E� , µ) in (2.7) takes into account radiative corrections (see [9] for details)

and equals one at the tree level.

The remaining terms in (2.7) are the power-suppressed, 1/mb and 1/(2E�), corrections.

They are written as a sum of the “symmetry-preserving” part, i.e. the same for the both

form factors FV and FA, and the “symmetry-breaking” part which has opposite sign. The

leading contributions to the symmetry-breaking part are [9]

�⇠(E�) =
ebfBmB

2E�mb

+
eufBmB

(2E�)2
. (2.9)

The equality of the two form factors at leading power in the heavy-quark and large

photon energy (E� ⇠ mb) expansion is a consequence of the left-handedness of the weak

interaction current and helicity-conservation of the quark-gluon interaction in the high-

energy limit. In terms of the helicity form factors F⌥ ⌘ (FV ± FA)/2, the above implies

that F+ = �⇠ vanishes at leading power, while ⇠ represents the power correction to the

non-vanishing helicity form factor F�. Our aim is to provide improved estimates of ⇠(E�)

and �⇠(E�), for which currently factorization formulae are not available. We split the

calculation into “higher-twist corrections” of order ⇤/E� and ⇤/mb from the region where

the currents in (2.2) are separated by a small light-cone distance x2 ⇠ 1/(mb⇤), and the

– 4 –

FV(Eγ) =
euMB fB

2EγλB(μ)
R(Eγ, μ) + ξ(Eγ) + Δξ(Eγ)

FA(Eγ) =
euMB fB

2EγλB(μ)
R(Eγ, μ) + ξ(Eγ) − Δξ(Eγ)

M. Beneke and J. Rohrwild, 2011

ϵr
μ(pγ) Tμν(pγ, pH) = ϵr

μ(pγ){εμντρ(pγ)τvρFV + i [−gμν(pγ ⋅ v) + vμpν
γ ] FA − i

vμvν

pγ ⋅ v
mH fH}



Structure dependent contributions !
to decays of D and B mesons!

For!the!studies!of!D!and!B!mesons!decays!we!cannot!apply!ChPT!

For!B!mesons!in!par3cular!we!have!another!small!scale,!

!!!!!!!!the!radia3on!of!a!sos!photon!may!s3ll!induce!sizeable!SD!effects!
 mB* −mB !  45 MeV

A!phenomenological!analysis!based!on!a!simple!pole!model!for!F
V
!and!F

A
!

confirms!this!picture!! D.!Becirevic,!B.!Haas,!E.!Kou,!PLB!681!(2009)!257!

 
FV !

"CV

1− pB − k( )2 /mB*
2

 
FA !

"CA

1− pB − k( )2 /mB1
2

Under!this!assump3on!the!SD!contribu3ons!to!!!!!!!!!!!!!!!!!!!!!!

for!Eγ!�!20!MeV!can!be!very!large,!but!are!small!for!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!and!

B→ eν(γ )

B→ µν(γ ) B→τν(γ )
A!laWce!calcula3on!of!FV!and!FA!would!be!very!useful!

B→ eν(γ ) B→ µν(γ ) B→τν(γ )

SD large SD small 

64 A lattice calculation of FV and FA would be very useful

D. Becirevic et al., PLB 681 (2009) 257



R1
A(ΔE) = Γ1

A(ΔE)
Γ0

α ,pt + Γ1
pt (ΔE)

  ,   A = { SD, INT } SD!=!structure!dependent!

INT!=!interference!

π → µν(γ )

K → eν(γ ) K → µν(γ )

π → eν(γ )

ΔE = 20 MeV

Interference!contribu3ons!are!negligible!in!all!the!decays!

Structurejdependent!contribu3ons!can!be!sizable!for!!!!!!!!!!!!!!!!!!!!!!!!!but!they!!

are!negligible!for!!!!!!!!!!!!!!!!!!!!!!!!!!!(which!is!experimentally!accessible)!

K → eν(γ )
ΔE < 20 MeV 63 



Structure dependent electromagnetic
corrections

In this note we provide the expression for the di↵erential decay rate

d�1

dx�
=

d

dx�
�
⇣
P+ ! `+⌫`�

⌘
(1)

where, in rest frame of the initial meson, x� = 2E�/mP .
The starting point is the expression for the double di↵erential decay rate

d2�1/dx�dx`, which was obtained in Ref.[1] and it also reported in Eqs. (B12)
and (B13) of our paper [2]1. By expressing the rate as �1 = �pt

1 + �SD
1 +

�INT
1 , where the three terms correspond to the pointlike, structure-dependent

and interference contributions respectively, after integrating over the lepton
energy x` we find

4⇡

↵�tree
0

d�SD
1

dx�
=

m2
P

6f 2
P r2` (1� r2` )

2 [FV (x�)2 + FA(x�)2] fSD(x�)

4⇡

↵�tree
0

d�INT
1

dx�
= � 2mP

fP (1� r2` )
2

h
FV (x�) f INT

V (x�) + FA(x�) f INT
A (x�)

i
(2)

where FV,A(x�) are the vector and axial form factors, r` = m`/mP and the
functions fSD(x�) and f INT

V,A (x�) in Eq. (2) are given by

fSD(x�) = x3
�

"
(2� 2x� + r2` ) (1� x� � r2` )

2

(1� x�)2

#

f INT
V (x�) = x2

�

"
1� x� � r2`

1� x�
� log

 
1� x�

r2`

!#

f INT
A (x�) = x�

"
1� 3x� + 2x2

� + r2`x� � r4`
1� x�

+ (x� � 2r2` ) log

 
1� x�

r2`

!#

.

(3)
Note that a term proportional to FV (x�) · FA(x�), which appears in the
double di↵erential decay rate d2�SD

1 /dx�dx`, gives a vanishing contribution
to the integral over x` and does not enter in d�SD

1 /dx� of Eq. (2). The total

1I have checked the correctness of these results.

1
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ChPT O(e2p4) lattice

0.1 0.2 0.3 0.4
x�

5.×10-10

1.×10-9

1.5×10-9

2.×10-9

2.5×10-9

dR1SD(� � ����)/dx�

�������

ChPT O(e2p4) lattice

0.1 0.2 0.3 0.4
x�

-2.×10-7

-1.×10-7

1.×10-7

2.×10-7

dR1INT(� � ����)/dx�

�������

ChPT O(e2p4) lattice

0.2 0.4 0.6 0.8
x�

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

dR1SD(K � ����)/dx�

�������

ChPT O(e2p4) lattice

0.2 0.4 0.6 0.8
x�

-0.00015

-0.00010

-0.00005

dR1INT(K � ����)/dx�



3pt function in Euclidean space: time integralsThree-point function in Euclidean space: time integrals

For large negative tB ,

I
<
µ⌫(tB ,T ) =

Z
0

�T
dt e

E� t
Cµ⌫(t, tB)

= hB(pB)|�
†
B(0)|0i

1

2EB
e
EB tB

⇥

X

n

1

2En,(pB�p� )

1

E� + En,(pB�p� ) � EB

⇥h0|J
weak

⌫ (0)|n(pB � p�)ihn(pB � p�)|Jµ(0)|B(pB)i

⇥

⇣
1� e

�(E�+En,(pB�p� )�EB )T
⌘

The unwanted exponential e
�(E�+En,(pB�p� )�EB )T

goes to zero for large T if

E� + En,(pB�p� ) > EB .

Because the states |n(pB � p�)i have the same quark-flavor quantum numbers

as the B meson, we have En,(pB�p� ) � EB,(pB�p� ) =
p

m2

B + (pB � p�)
2.

The inequality becomes

q
p2
� +

q
m2

B + (pB � p�)
2 >

q
m2

B + p2

B .

This is in fact always satisfied (as long as p� 6= 0).



3pt function in Euclidean space: time integrals [2]
Three-point function in Euclidean space: time integrals

For large negative tB ,

I
>
µ⌫(tB ,T ) =

Z T

0

dt e
E� t

Cµ⌫(t, tB)

= �hB(pB)|�
†
B(0)|0i

1

2EB
e
EB tB

⇥

X

n

1

2Em,p�

1

E� � Em,p�

⇥h0|Jµ(0)|m(p�)ihm(p�)|J
weak

⌫ (0)|B(pB)i

⇥

⇣
1� e

(E��Em,p� )T
⌘

The unwanted exponential e
(E��Em,p� )T

goes to zero for large T if Em,p� > E� .

Because the states |m(p�)i have a nonzero mass, this is always satisfied.



Cross-checksD+
s ! `+⌫� form factors vs T : p� = (0, 0, 1) 2⇡L , tDs/a = �12

Recall

Tµ⌫ = ✏µ⌫⌧⇢p
⌧
�v

⇢
FV + i [�gµ⌫(p� · v) + vµ(p�)⌫ ]FA � i

vµv⌫

p� · v
mDs fDs

+(p�)µ-terms

�! also extract fDs as a cross-check

afDs

T/a
Yellow line = FLAG 2019 average [arXiv:1902.08191]

D+
s ! `+⌫� form factors vs T : p� = (0, 0, 1) 2⇡L , tDs/a = �12

Recall

Tµ⌫ = ✏µ⌫⌧⇢p
⌧
�v

⇢
FV + i [�gµ⌫(p� · v) + vµ(p�)⌫ ]FA � i

vµv⌫

p� · v
mDs fDs

+(p�)µ-terms

�! also extract fDs as a cross-check

afDs

T/a
Yellow line = FLAG 2019 average [arXiv:1902.08191]
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Cancellation between quark components

2 4 6 8 10 12 14
Summation Range T

°0.06

°0.04

°0.02

0.00

0.02

0.04

0.06

0.08

F
> V
(T

,t
H

)

°1
3J

em
s

2
3J

em
c

2
3J

em
c ° 1

3J
em
s

apDs
= 2πa /L(0.0, 0.0, 0.0) apγ = 2πa /L(0.0, 0.0, 1.8)

F
>

,w
ea

k
V

(T
,t H

)



Fit form: 4d method

Use fit ranges where data has plateaued in tH , i.e. tH ! �1

Include terms to fit
(1) unwanted exponential from first intermediate state

Sum of both time orderings Iµ⌫(T , tH) = I
<
µ⌫(T , tH) + I

>
µ⌫(T , tH)

F (tH ,T ) = F + B
<
F
e
�(E��EH+E

<
)T

| {z }
tem<0

+ B
>
F
e
(E��E

>
)T

| {z }
tem>0

⌅ fit parameters

Only have three values of T , fitting multiple exponentials not possible
! Use broad Gaussian prior on E

> exclude unphysical values

Look at preliminary data and fit results for K� ! �`�⌫̄`
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Fit form: 4d method



K� ! �`�⌫̄`: 4d method pK =
2⇡
L
(0, 0, 1) p� =

2⇡
L
(0, 0, 1)

Sum of both time orderings tem < 0 + tem > 0:

FA(tH ,T ) = FA + B
<
FA
e
�(E��EK+E

<
A
)T + B

>
FA
e
(E��E

>
A
)T

16 / 18

FA(tH ,T )

Source sink separation tK/a

: 4d methodK → ℓνℓγ



: 3d vs 4d analysis resultsK → ℓνℓγK� ! �`�⌫̄`: Independent 3d and 4d analysis results

17 / 18

FV

x� = 2E (0)

� /mK

FA,SD

x� = 2E (0)

� /mK

0 < x� < 1

Ncfg = 20 Ncfg = 20

Combined analysis ! remove prior on the parameter E>

Still need two-point function to constrain excited state energy gap �E

Combined fits have error similar or larger to 3d fits alone

Similar findings for the D
+
s ! �`+⌫` decay process

4d method cannot resolve the sum of the unwanted exponentials of the 
separate time orderings


