Structure-dependent form factors in radiative leptonic decays with Domain Wall fermions

Universität Regensburg

LAT

The 39th International Symposium on Lattice Field Theory Bonn 8th - 13th August 2022 OUTLINE

Motivations

Leptonic decays of pseudoscalar mesons

$$H \to \ell \nu_{\ell} \gamma$$

Outlook

In collaboration with

C. Kane, C. Lehner, S. Meinel and A. Soni

(for early results: arXiv:1907.00279, arXiv:2110.13196)

Phenomenological motivations

Radiative corrections to leptonic B-meson decays

• The emission of a real hard photon removes the $(m_{\ell}/M_B)^2$ helicity suppression

 J_{μ}

• This is the simplest process that probes (for large E_{γ}) the first inverse moment of the B-meson LCDA

$$\frac{1}{\lambda_B(\mu)} = \int_0^\infty \frac{d\omega}{\omega} \Phi_{B+}(\omega,\mu)$$

 λ_B is an important input in QCD-factorization predictions for non-leptonic B decays but is poorly known M. Beneke, V. M. Braun, Y. Ji, Y.-B. Wei, 2018

- Belle 2018: $\mathscr{B}(B^- \to \ell^- \bar{\nu}_{\ell} \gamma, E_{\gamma} > 1 \text{ GeV}) < 3.0 \cdot 10^{-6} \longrightarrow \lambda_B > 0.24 \text{ GeV}$
 - QCD sum rules in HQET: $\lambda_B(1 \text{ GeV}) = 0.46(11) \text{ GeV}$

• Enhancement of the virtual corrections by a factor M_B/Λ_{QCD} and by large logarithms M. Beneke, C. Bobeth, R. Szafron, 2019

• The real photon emission process is a clean probe of NP: sensitiveness to C_9, C_{10}, C_7

Lattice calculation of $H \rightarrow \ell \nu_{\ell} \gamma$

Hadronic tensor and form factors

$$J_{\mu}^{em} = \sum_{q} Q_{q} \bar{q} \gamma_{\mu} q$$

$$J_{\nu}^{weak} = \bar{q}_{1} \gamma_{\nu} (1 - \gamma_{5}) q_{2}$$

$$H - \int_{J_{\nu}^{weak}} \mathcal{V}_{\rho}$$

$$H - \int_{J_{\nu}^{weak}} \mathcal{V}_{\rho}$$

$$T_{\mu\nu} = -i \int d^4x \ e^{ip_{\gamma} \cdot x} \langle 0 | \mathbf{T} \left(J_{\mu}^{em}(x) J_{\nu}^{weak}(0) \right) | H(\overrightarrow{p}_H) \rangle \qquad (p_H = m_H v)$$

$$= \varepsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_V + i \left[-g_{\mu\nu}(p_{\gamma} \cdot v) + v_{\mu}(p_{\gamma})_{\nu} \right] F_A - i \frac{v_{\mu}v_{\nu}}{p_{\gamma} \cdot v} m_H f_H + (p_{\gamma})_{\mu} - \text{terms}$$

$$F_A = F_{A,SD} + (-Q_{\ell} f_H / E_{\gamma}^{(0)}), \quad E_{\gamma}^{(0)} = p_{\gamma} \cdot v$$

Goal: Calculate $F_V, F_{A,SD}$ as a function of $E_{\gamma}^{(0)}$

 $\phi_H^{\dagger} = - \bar{q}_2 \gamma_5 q_1$

5

$$C_{3,\mu\nu}(t_{em},t_H) = \int d^3x \int d^3y \ e^{-i\vec{\mathbf{p}}_{\gamma}\cdot\vec{\mathbf{x}}} e^{i\vec{\mathbf{p}}_H\cdot\vec{\mathbf{y}}} \langle J^{\text{em}}_{\mu}(t_{em},\vec{\mathbf{x}}) J^{\text{weak}}_{\nu}(0) \phi^{\dagger}_{H}(t_H,\vec{\mathbf{y}}) \rangle$$

safe analytic continuation from Minkowsky to Euclidean spacetime, because of the absence of intermediate states lighter than the pseudoscalar meson
C. Kane *et al.*, <u>arXiv:1907.00279</u>, RM123 & Soton Coll., <u>arXiv:2006.05358</u>

Euclidean correlation function

$$C_{3,\mu\nu}(t_{em}, t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{\mathbf{p}}_{1}\cdot\vec{\mathbf{x}}} e^{i\vec{\mathbf{p}}_{H}\cdot\vec{\mathbf{y}}} \langle J_{\mu}^{em}(t_{em},\vec{\mathbf{x}}) J_{\nu}^{weak}(0) \phi_{H}^{\dagger}(t_{H},\vec{\mathbf{y}}) \rangle \qquad I_{\mu\nu}^{<}(T, t_{H}) = \int_{0}^{0} dt_{em} e^{E_{\gamma}t_{em}} C_{3,\mu\nu}(t_{em}, t_{H}) \\ I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma}t_{em}} C_{3,\mu\nu}(t_{em}, t_{H}) \\ I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma}t_{em}} C_{3,\mu\nu}(t_{em}, t_{H}) \\ I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma}t_{em}} C_{3,\mu\nu}(t_{em}, t_{H}) \\ I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma}t_{em}} C_{3,\mu\nu}(t_{em}, t_{H}) \\ I_{\mu\nu}^{>}(t_{H}, T) = \int_{0}^{T} dt_{em} e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em}, t_{H}) \\ I_{\mu\nu}^{>}(t_{H}, T) = \int_{0}^{T} dt_{em} e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em}, t_{H}) \\ = -\sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{\mathbf{p}}_{H})| \phi_{H}^{\dagger}(0)|0\rangle}{2E_{m,\vec{\mathbf{p}}_{H}}} \\ \times \sum_{n} \frac{\langle 0| J_{\mu}^{em}(0) |n(\vec{\mathbf{p}}_{\gamma})\rangle \langle n(\vec{\mathbf{p}}_{\gamma})| J_{\nu}^{weak}(0) |m(\vec{\mathbf{p}}_{H})\rangle}{2E_{n,\vec{\mathbf{p}}_{\gamma}}(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})} \left[1 - e^{(E_{\gamma} - E_{n,\vec{\mathbf{p}}_{\gamma}})T}\right] \\ T \to \infty \text{ to remove unwanted exponentials} \\ \text{that come with intermediate states}$$

Calculating $I_{\mu\nu}(T, t_H)$

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{\mathbf{p}}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

- 1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_{H})$ on lattice, fixed t_{H} get all t_{em} for free arXiv:1907.00279 & arXiv:2110.13196
- 2: 4d sequential propagator through J_{μ}^{em} \rightarrow calculate $I_{\mu\nu}(T, t_H)$ on lattice, fixed T get all t_H for free

RM123 & Soton Coll., <u>arXiv:2006.05358</u>: Set $T = N_T/2$ and fit to constant in t_H where data has plateaued

For a comparison of 3d vs 4d methods see arXiv:2110.13196

Simulation details

- N_f = 2 + 1 DWF, RBC/UKQCD ensemble M_{π}^{*} = 340 (1) MeV, $a \simeq 0.11$ fm, charm valence quarks → Möbius DW with "stout" smearing
- 25 configurations, AMA with 16 sloppy and 1 exact samples per config
- Disconnected diagrams are neglected
- \mathbb{Z}_2 random wall sources & randomly placed point sources
- Local electromagnetic current + mostly non-perturbative RCs
- Two datasets: $J^{weak}(0)$ or $J^{em}(0)$
-) For point sources use translational invariance to fix em/weak operator at m 0
- use a "sine-cardinal reconstruction" to generate data for arbitrary photon momenta (only exp. small FVEs are introduced)

$$C_{3,\mu\nu} = \int d^3x \, d^3y \, e^{-i\overrightarrow{p}_{\gamma}\cdot\overrightarrow{x}} \langle J_{\mu}^{em}(t_{em},\overrightarrow{x})J_{\nu}^{weak}(0)\phi_H^{\dagger}(t_H,\overrightarrow{y})\rangle \qquad \qquad \overrightarrow{p}_H = 0, \text{ several } \overrightarrow{p}_{\gamma}$$

Improved form factors estimators

Fit form: 3d method

Include terms to fit

(1) unwanted exponential from first intermediate state(2) first excited state

Fit form factors F_V and $F_{A,SD}$ directly instead of $I_{\mu\nu}$

$$\begin{split} t_{H} &< t_{em} < 0 \quad t_{H} < 0 < t_{W} \\ F_{<}^{weak}(t_{H}, T) = F^{<} + B_{F}^{<} \left(1 + B_{F,exc}^{<} e^{\Delta E(T+t_{H})} \right) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta Et_{H}} \\ F_{>}^{em}(t_{H}, T) = F^{<} + B_{F}^{<} \left[1 + B_{F,exc}^{<} \frac{E_{\gamma} + E^{<} - (\Delta E + E_{H})}{E_{\gamma} + E^{<} - E_{H}} e^{\Delta Et_{H}} \right] e^{-(E_{\gamma} - E_{H} + E^{<})T} + \tilde{C}_{F}^{<} e^{\Delta Et_{H}} \\ t_{H} < 0 < t_{em} \quad t_{H} < t_{W} < 0 \\ F_{>}^{weak}(t_{H}, T) = F^{>} + B_{F}^{>} \left(1 + B_{F,exc}^{>} e^{\Delta Et_{H}} \right) e^{(E_{\gamma} - E^{>})T} + C_{F}^{>} e^{\Delta Et_{H}} \\ F_{<}^{em}(t_{H}, T) = F^{>} + B_{F}^{>} \left[1 + B_{F,exc}^{>} \frac{E_{\gamma} - E^{>}}{E_{\gamma} - E^{>} + \Delta E} e^{\Delta E(T+t_{H})} \right] e^{(E_{\gamma} - E^{>})T} + \tilde{C}_{F}^{>} e^{\Delta Et_{H}} \end{split}$$

Only have two values of t_H , fitting multiple exponentials not possible \rightarrow Determine ΔE from the pseudoscalar two-point correlation function \rightarrow use result as Gaussian prior in form factor fits

$D_s \rightarrow \ell \nu_{\ell} \gamma$: 3d method

$D_s \rightarrow \ell \nu_{\ell} \gamma$: 3d method

NP subtraction of IR-divergent discretization effects

Blue data: improved subtraction of pt-like contribution

$D_s \rightarrow \ell \nu_\ell \gamma$: results (3d method)

 $D_s \rightarrow \ell \nu_{\ell} \gamma$: results (3d method) [2]

[BESIII Collaboration, arXiv:1902.03351]

Fit Ansatz inspired by the phenomenological analysis of arXiv:0907.1845

$$K \rightarrow \ell \nu_{\ell} \gamma$$
: results

J. Bijnens et al., 1993

Conclusions and future perspectives

The form factors for real emissions are accessible from Euclidean correlators

We compared analysis methods using 3d and 4d data. 3d method results in smallest statistical uncertainties. A method paper will appear very soon

With moderate statistics we are able to provide rather precise, first-principles results for the form factors in the full kinematical (photon-energy) range

Lattice calculations of radiative leptonic heavy-meson decays at high photon energy could provide useful information to better understand the internal structure of hadrons

•The analysis on a variety of ensembles with $m_{\pi} \simeq m_{\pi}^{phys}$ is in progress to reach the continuum limit. To extend the study to B-meson decays we will take advantage of new RBC/UKQCD ensembles at $a^{-1} \approx (3.5, 4.5)$ GeV

				_	
	48I	64I	96I	_	
$a^3 \cdot T/a^4$	$48^3 \cdot 96$	$64^3 \cdot 128$	$96^3 \cdot 192$		* *
β	2.13	2.25	2.31	*	
am_l	0.00078	0.000678	0.0054	×PI	146
am_h	0.0362	0.02661	0.02132	1	- *
lpha	2.0	2.0	2.0		
$u^{-1}({\rm GeV})$	1.730(4)	2.359(7)	≈ 2.8		
$a({ m fm})$	0.1141(3)	0.0837(3)	≈ 0.071		
$L({\rm fm})$	5.476(12)	5.354(16)	≈ 6.8		
L_s/a	24	12	12		
$n_{\pi} ({\rm MeV})$	139.2(4)	139.2(5)	≈ 135		
$m_{\pi}L$	3.863(6)	3.778(8)	≈ 4.7		
$N_{ m conf}$	120	160	20		

Supplementary slides

Electromagnetic and isospin-breaking effects

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and SU(2)-breaking corrections.

$$\frac{\Gamma\left(K^{+} \to \ell^{+} \boldsymbol{v}_{\ell}(\boldsymbol{\gamma})\right)}{\Gamma\left(\pi^{+} \to \ell^{+} \boldsymbol{v}_{\ell}(\boldsymbol{\gamma})\right)} = \left(\frac{|V_{us}|}{|V_{ud}|} \frac{f_{K}}{f_{\pi}}\right)^{2} \frac{M_{K^{+}}\left(1 - m_{\ell}^{2}/M_{K^{+}}^{2}\right)^{2}}{M_{\pi^{+}}\left(1 - m_{\ell}^{2}/M_{\pi^{+}}^{2}\right)^{2}} \left(1 + \delta_{EM} + \delta_{SU(2)}\right) \mathbf{K}/\pi$$

For $\Gamma_{Kl2}/\Gamma_{\pi l2}$ At leading order in ChPT both δ_{EM} and $\delta_{SU(2)}$ can be expressed in terms of physical quantities (e.m. pion mass splitting, f_K/f_{π} , ...) • $\delta_{EM} = -0.0069(17)$ 25% of error due to higher orders $\rightarrow 0.2\%$ on $\Gamma_{Kl2}/\Gamma_{\pi l2}$ M.Knecht et al., 2000; V.Cirigliano and H.Neufeld, 2011

$$\delta_{SU(2)} = \left(\frac{f_{K^+}/f_{\pi^+}}{f_K/f_{\pi^-}}\right)^2 - 1 = -0.0044(12)$$

25% of error due to higher orders \Rightarrow 0.1% on $\Gamma_{K12}/\Gamma_{\pi12}$

J.Gasser and H.Leutwyler, 1985; V.Cirigliano and H.Neufeld, 2011

ChPT is not applicable to D and B decays

Real photon emission amplitude

By setting $p_{\gamma}^2 = 0$, at fixed meson mass, the form factors depend on $p_H \cdot p_{\gamma}$ only. Moreover, by choosing a *physical* basis for the polarization vectors, *i.e.* $\epsilon_r(\mathbf{p}_{\gamma}) \cdot p_{\gamma} = 0$, one has

$$\epsilon_{\mu}^{r}(\mathbf{p}_{\gamma}) T^{\mu\nu}(p_{\gamma}, p_{H}) = \epsilon_{\mu}^{r}(\mathbf{p}_{\gamma}) \left\{ \varepsilon^{\mu\nu\tau\rho}(p_{\gamma})_{\tau} v_{\rho} F_{V} + i \left[-g^{\mu\nu}(p_{\gamma} \cdot v) + v^{\mu}p_{\gamma}^{\nu} \right] F_{A} - i \frac{v^{\mu}v^{\nu}}{p_{\gamma} \cdot v} m_{H} f_{H} \right\}$$

In the case of off-shell photons $(p_{\gamma}^2 \neq 0) \longrightarrow \Gamma[H \rightarrow \ell \nu_{\ell} \ell^+ \ell^-]$ expressed in terms of 4 form factors

For large photon energies and in the B-meson rest frame the form factors can be written as

$$F_{V}(E_{\gamma}) = \frac{e_{u}M_{B}f_{B}}{2E_{\gamma}\lambda_{B}(\mu)}R(E_{\gamma},\mu) + \xi(E_{\gamma}) + \Delta\xi(E_{\gamma}) - F_{A}(E_{\gamma}) = \frac{e_{u}M_{B}f_{B}}{2E_{\gamma}\lambda_{B}(\mu)}R(E_{\gamma},\mu) + \xi(E_{\gamma}) - \Delta\xi(E_{\gamma}) - F_{A}(E_{\gamma}) - \Delta\xi(E_{\gamma}) - F_{A}(E_{\gamma}) - F_$$

M. Beneke and J. Rohrwild, 2011

Structure dependent contributions to decays of D and B mesons

For the studies of D and B mesons decays we cannot apply ChPT

 $F_{V} \simeq \frac{C_{V}}{1 - (p_{B} - k)^{2} / m_{B^{*}}^{2}}$

- For B mesons in particular we have another small scale, $m_{R^*} m_B \simeq 45 \text{ MeV}$ the radiation of a soft photon may still induce sizeable SD effects
- A phenomenological analysis based on a simple pole model for F_{V} and F_{A} 0 D. Becirevic et al., PLB 681 (2009) 257 confirms this picture

Under this assumption the SD contributions to $B \rightarrow ev(\gamma)$ for $E_v \approx 20$ MeV can be very large, but are small for $F_A \simeq \frac{\tilde{C}_A}{1 - (p_B - k)^2 / m_B^2} \qquad B \to \mu \nu(\gamma) \text{ and } B \to \tau \nu(\gamma)$

A lattice calculation of F_V and F_A would be very useful

- Interference contributions are negligible in all the decays
- Structure-dependent contributions can be sizable for $K \rightarrow eV(\gamma)$ but they are negligible for $\Delta E < 20$ MeV (which is experimentally accessible)

$$\frac{4\pi}{a\Gamma_{1}^{\text{IVT}}} = \frac{m_{P}^{2}}{6f_{P}^{\text{IVT}}^{2}(1 - r_{\ell}^{2})^{2}} \left[F_{V}(x_{\gamma})^{2} + F_{A}(x_{\gamma})^{2}\right] f^{\text{SD}}(x_{\gamma})$$

$$= \frac{4\pi}{a\Gamma_{1}^{\text{IVT}}} = -\frac{2m_{P}}{f_{P}\left(1 - r_{\ell}^{2}\right)^{2}} \left[F_{V}(x_{\gamma})f_{V}^{\text{IVT}}(x_{\gamma}) + F_{A}(x_{\gamma})f_{A}^{\text{IVT}}(x_{\gamma})\right]$$

$$= - \text{OPT ORE'S - MSS}$$

$$= - \frac{2m_{P}}{f_{P}\left(1 - r_{\ell}^{2}\right)^{2}} \left[F_{V}(x_{\gamma})f_{V}^{\text{IVT}}(x_{\gamma}) + F_{A}(x_{\gamma})f_{A}^{\text{IVT}}(x_{\gamma})\right]$$

$$= - \frac{2m_{P}}{f_{P}\left(1 - r_{\ell}^{2}\right)^{2}} \left[F_{V}(x_{\gamma})f_{V}^{\text{IVT}}(x_{\gamma}) + F_{A}(x_{\gamma})f_{V}^{\text{IVT}}(x_{\gamma})\right]$$

$$= - \frac{2m_{P}}{f_{P}\left(1 - r_{\ell}^{2}\right)^{2}} \left[F_{V}(x_{\gamma})f_{V}^{\text{IVT}}(x_{\gamma}) + F_{A}(x_{\gamma})f_{V}^{\text{IVT}}(x_{\gamma}) + F_$$

0.8

0.4

0.2

0.6

3pt function in Euclidean space: time integrals

For large negative t_B ,

$$\begin{split} H_{\mu\nu}^{<}(t_{B},T) &= \int_{-T}^{0} dt \ e^{E_{\gamma}t} \ C_{\mu\nu}(t,t_{B}) \\ &= \langle B(\mathbf{p}_{B}) | \phi_{B}^{\dagger}(0) | 0 \rangle \frac{1}{2E_{B}} e^{E_{B}t_{B}} \\ &\times \sum_{n} \frac{1}{2E_{n,(\mathbf{p}_{B}-\mathbf{p}_{\gamma})}} \frac{1}{E_{\gamma}+E_{n,(\mathbf{p}_{B}-\mathbf{p}_{\gamma})}-E_{B}} \\ &\times \langle 0 | J_{\nu}^{\text{weak}}(0) | n(\mathbf{p}_{B}-\mathbf{p}_{\gamma}) \rangle \langle n(\mathbf{p}_{B}-\mathbf{p}_{\gamma}) | J_{\mu}(0) | B(\mathbf{p}_{B}) \rangle \\ &\times \left(1-e^{-(E_{\gamma}+E_{n,(\mathbf{p}_{B}-\mathbf{p}_{\gamma})}-E_{B})T}\right) \end{split}$$

The unwanted exponential $e^{-(E_{\gamma}+E_{n,(\mathbf{p}_{B}-\mathbf{p}_{\gamma})}-E_{B})T}$ goes to zero for large T if $E_{\gamma}+E_{n,(\mathbf{p}_{B}-\mathbf{p}_{\gamma})}>E_{B}$.

Because the states $|n(\mathbf{p}_B - \mathbf{p}_{\gamma})\rangle$ have the same quark-flavor quantum numbers as the *B* meson, we have $E_{n,(\mathbf{p}_B - \mathbf{p}_{\gamma})} \ge E_{B,(\mathbf{p}_B - \mathbf{p}_{\gamma})} = \sqrt{m_B^2 + (\mathbf{p}_B - \mathbf{p}_{\gamma})^2}$.

The inequality becomes $\sqrt{\mathbf{p}_{\gamma}^2} + \sqrt{m_B^2 + (\mathbf{p}_B - \mathbf{p}_{\gamma})^2} > \sqrt{m_B^2 + \mathbf{p}_B^2}$.

This is in fact always satisfied (as long as $\mathbf{p}_{\gamma} \neq 0$).

3pt function in Euclidean space: time integrals [2]

For large negative t_B ,

$$I_{\mu\nu}^{>}(t_{B},T) = \int_{0}^{T} dt \ e^{E_{\gamma}t} \ C_{\mu\nu}(t,t_{B})$$

$$= -\langle B(\mathbf{p}_{B}) | \phi_{B}^{\dagger}(0) | 0 \rangle \frac{1}{2E_{B}} e^{E_{B}t_{B}}$$

$$\times \sum_{n} \frac{1}{2E_{m,\mathbf{p}\gamma}} \frac{1}{E_{\gamma} - E_{m,\mathbf{p}\gamma}}$$

$$\times \langle 0 | J_{\mu}(0) | m(\mathbf{p}_{\gamma}) \rangle \langle m(\mathbf{p}_{\gamma}) | J_{\nu}^{\text{weak}}(0) | B(\mathbf{p}_{B}) \rangle$$

$$\times \left(1 - e^{(E_{\gamma} - E_{m,\mathbf{p}\gamma})T} \right)$$

The unwanted exponential $e^{(E_{\gamma}-E_{m,\mathbf{p}_{\gamma}})T}$ goes to zero for large T if $E_{m,\mathbf{p}_{\gamma}} > E_{\gamma}$. Because the states $|m(\mathbf{p}_{\gamma})\rangle$ have a nonzero mass, this is always satisfied.

Cross-checks

Recall

$$T_{\mu\nu} = \epsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_{V} + i [-g_{\mu\nu} (p_{\gamma} \cdot v) + v_{\mu} (p_{\gamma})_{\nu}] F_{A} - i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{D_{s}} f_{D_{s}}$$
$$+ (p_{\gamma})_{\mu} \text{-terms}$$

 \longrightarrow also extract f_{D_s} as a cross-check

Yellow line = FLAG 2021 average

Cancellation between quark components

Fit form: 4d method

Use fit ranges where data has plateaued in t_H , i.e. $t_H \rightarrow -\infty$

Include terms to fit

(1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu\nu}(T, t_H) = I_{\mu\nu}^{<}(T, t_H) + I_{\mu\nu}^{>}(T, t_H)$

Only have three values of T, fitting multiple exponentials not possible \rightarrow Use broad Gaussian prior on $E^{>}$

 $K \to \ell \nu_{\ell} \gamma$: 4d method

Sum of both time orderings $t_{em} < 0 + t_{em} > 0$: $F_A(t_H, T) = F_A + B_{F_A}^< e^{-(E_\gamma - E_K + E_A^<)T} + B_{F_A}^> e^{(E_\gamma - E_A^>)T}$

$K \rightarrow \ell \nu_{\ell} \gamma$: 3d vs 4d analysis results

4d method cannot resolve the sum of the unwanted exponentials of the separate time orderings