Structure-dependent form factors

The 39th International Symposium on Lattice Field Theory Bonn

8th - 13th August 2022

OUTLINE

Q Motivations

- Leptonic decays of pseudoscalar mesons
$H \rightarrow \ell \nu_{\ell \gamma}$
© Outlook
In collaboration with
C. Kane, C. Lehner, S. Meinel and A. Soni (for early results: $\underline{\text { arXiv:1907.00279, }}$ arXiv:2110.13196)

Phenomenological motivations

Radiative corrections to leptonic B-meson decays

$B^{-} \rightarrow \ell^{-} \bar{\nu}_{e \gamma}$

The emission of a real hard photon removes the $\left(m_{\ell} / M_{B}\right)^{2}$ helicity suppression
This is the simplest process that probes (for large E_{γ}) the first inverse moment of the B-meson LCDA

$$
\frac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty} \frac{d \omega}{\omega} \Phi_{B+}(\omega, \mu)
$$

λ_{B} is an important input in QCD-factorization predictions for non-leptonic B decays but is poorly known
M. Beneke,V. M. Braun, Y. Ji, Y.-B.Wei, 20 I 8

$$
\text { Belle 2018: } \mathscr{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell} \gamma, E_{\gamma}>1 \mathrm{GeV}\right)<3.0 \cdot 10^{-6} \quad \longrightarrow \quad \lambda_{B}>0.24 \mathrm{GeV}
$$

QCD sum rules in HQET: $\lambda_{B}(1 \mathrm{GeV})=0.46(11) \mathrm{GeV}$
$B_{q} \rightarrow \ell^{+} \ell^{-(}(\gamma)$

Enhancement of the virtual corrections by a factor $M_{B} / \Lambda_{Q C D}$ and by large logarithms M. Beneke, C. Bobeth, R. Szafron, 2019

The real photon emission process is a clean probe of NP: sensitiveness to C_{9}, C_{10}, C_{7}

Lattice calculation of

$$
H \rightarrow \ell \nu_{\ell} \gamma
$$

Hadronic tensor and form factors

$$
\phi_{H}^{\dagger}=-\bar{q}_{2} \gamma_{5} q_{1}
$$

$$
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \overrightarrow{\mathbf{p}}_{\gamma} \cdot \overrightarrow{\mathbf{x}}} e^{i \overrightarrow{\mathbf{p}}_{H} \cdot \overrightarrow{\mathbf{y}}}\left\langle J_{\mu}^{\text {em }}\left(t_{e m}, \overrightarrow{\mathbf{x}}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \overrightarrow{\mathbf{y}}\right)\right\rangle
$$

safe analytic continuation from Minkowsky to Euclidean spacetime, because of the absence of intermediate states lighter than the pseudoscalar meson C. Kane et al., arXiv:1907.00279, RM123 \& Soton Coll., arXiv:2006.05358

$$
\begin{aligned}
& T_{\mu \nu}=-i \int d^{4} x e^{i p_{\gamma^{\prime}} \cdot x}\langle 0| \mathbf{T}\left(J_{\mu}^{e m}(x) J_{\nu}^{\text {weak }}(0)\right)\left|H\left(\vec{p}_{H}\right)\right\rangle \quad\left(p_{H}=m_{H} v\right) \\
& =\varepsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} \nu^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{H} f_{H}+\left(p_{\gamma}\right)_{\mu}-\text { terms } \\
& F_{A}=F_{A, S D}+\left(-Q_{\ell} f_{H} / E_{\gamma}^{(0)}\right), \quad E_{\gamma}^{(0)}=p_{\gamma} \cdot v \\
& \text { Goal: Calculate } F_{V}, F_{A, S D} \text { as a function of } E_{\gamma}^{(0)}
\end{aligned}
$$

Euclidean correlation function

$$
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \overrightarrow{\mathbf{p}}_{\gamma} \cdot \overrightarrow{\mathbf{x}}} e^{i \mathbf{p}_{H} \cdot \overrightarrow{\mathbf{y}}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \overrightarrow{\mathbf{x}}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \overrightarrow{\mathbf{y}}\right)\right\rangle
$$

$$
\begin{aligned}
& I_{\mu \nu}^{<}\left(T, t_{H}\right)=\int_{-T}^{0} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right) \\
& I_{\mu \nu}^{>}\left(T, t_{H}\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)
\end{aligned}
$$

Time ordering: $t_{e m}>0$

$$
T_{\mu \nu}^{>}=-\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right\rangle\left\langle n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\overrightarrow{\mathbf{p}}_{H}\right)\right\rangle}{2 E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\left(E_{\gamma}-E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\right)}
$$

$$
I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right) \quad t_{H} \rightarrow-\infty \text { to achieve }
$$

$$
=-\sum_{m} e^{E_{m} t_{H}} \frac{\left\langle m\left(\overrightarrow{\mathbf{p}}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{2 E_{m, \overrightarrow{\mathbf{p}}_{H}}} \quad \text { ground state saturation }
$$

$$
\times \sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right\rangle\left\langle n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|m\left(\overrightarrow{\mathbf{p}}_{H}\right)\right\rangle}{2 E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\left(E_{\gamma}-E_{\left.n, \overrightarrow{\mathbf{p}}_{\gamma}\right)}\right)}\left[1-e^{\left(E_{\gamma}-E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\right) T}\right]
$$

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim _{1} \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\overrightarrow{\mathbf{p}}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free arXiv:1907.00279 \& arXiv:2110.13196

2: 4 d sequential propagator through $J_{\mu}^{e m}$ \rightarrow calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free RM123 \& Soton Coll., arXiv:2006.05358: Set $T=N_{T} / 2$ and fit

to constant in t_{H} where data has plateaued
For a comparison of 3d vs 4d methods see arXiv:2110.13196

Simulation details

$N_{f}=2+1$ DWF, RBC/UKQCD ensemble $M_{\pi}=340(1) \mathrm{MeV}, a \simeq 0.11 \mathrm{fm}$, charm valence quarks \longrightarrow Möbius DW with "stout" smearing

25 configurations, AMA with 16 sloppy and I exact samples per config
Disconnected diagrams are neglected

\mathbb{Z}_{2} random wall sources \& randomly placed point sources
Local electromagnetic current + mostly non-perturbative RCs
Two datasets: $J^{\text {weak }}(0)$ or $J^{\text {em }}(0)$
For point sources use translational invariance to fix em/weak operator at $\mathbf{0}$ use a "sine-cardinal reconstruction" to generate data for arbitrary photon momenta (only exp. small FVEs are introduced)
$C_{3, \mu \nu}=\int d^{3} x d^{3} y e^{-i \vec{p}_{r} \cdot \vec{x}\left\langle J_{\mu}^{e m}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle \quad \vec{p}_{H}=0, \text { several } \vec{p}_{\gamma}, ~}$

Improved form factors estimators

Improved form factors estimators [2]

$$
\pm \vec{p}_{\gamma} \text { average }
$$

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Fit form factors F_{V} and $F_{A, S D}$ directly instead of $I_{\mu \nu}$

$$
\begin{aligned}
& t_{H}^{t_{H}<t_{e m}<0 \quad t_{H}<0<t_{W}} \\
& F_{<}^{\text {weak }}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}(1+B_{F, e x c}^{<} \overbrace{}^{\Delta E\left(T+t_{H}\right)}) \\
& F_{>}^{e m}\left(t_{H}, T\right)=F^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}+B_{F}^{<}+C_{F}^{<} e^{\Delta E t_{H}}
\end{aligned}
$$

$t_{H}<0<t_{e m} \quad t_{H}<t_{W}<0$

$$
F_{>}^{\text {weak }}\left(t_{H}, T\right)=F^{>}+B_{F}^{>}\left(1+B_{F, e x c}^{>} e^{\Delta E t_{H}}\right) e^{\left(E_{\gamma}-E^{>}\right) T}+C_{F}^{>} e^{\Delta E t_{H}}
$$

$$
F_{<}^{e m}\left(t_{H}, T\right)=F^{>}+B_{F}^{>}\left[1+B_{F, e x c}^{>} \frac{E_{\gamma}-E^{>}}{E_{\gamma}-E^{>}+\Delta E} e^{\Delta E\left(T+t_{H}\right)}\right] e^{\left(E_{\gamma}-E^{>}\right) T}+\tilde{C}_{F}^{>} e^{\Delta E t_{H}}
$$

Only have two values of t_{H}, fitting multiple exponentials not possible \rightarrow Determine ΔE from the pseudoscalar two-point correlation function
\rightarrow use result as Gaussian prior in form factor fits

$D_{s} \rightarrow \ell \nu_{\ell} \gamma: 3 \mathrm{~d}$ method

$D_{s} \rightarrow \ell \nu_{\ell} \gamma: 3 \mathrm{~d}$ method

NP subtraction of IR-divergent discretization effects

Blue data: improved subtraction of pt-like contribution

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$: results (3d method)

sign: different FFs parameterization

$D_{s} \rightarrow \ell \nu_{\ell} \gamma:$ results (3d method) [2]

$D_{s}^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}$
[BESIII Collaboration, arXiv:1902.03351]
Fit Ansatz inspired by the phenomenological analysis of arXiv:0907.1845

$K \rightarrow \ell \nu_{\ell} \gamma$: results

ChPT : $8 m_{K}\left(L_{9}^{r}+L_{10}^{r}\right) / f_{K}$
J. Bijnens et al., 1993

Conclusions and future perspectives

-The form factors for real emissions are accessible from Euclidean correlators

We compared analysis methods using 3d and 4d data. 3d method results in smallest statistical uncertainties. A method paper will appear very soon

With moderate statistics we are able to provide rather precise, first-principles results for the form factors in the full kinematical (photon-energy) range

Lattice calculations of radiative leptonic heavy-meson decays at high photon energy could provide useful information to better understand the internal structure of hadrons

The analysis on a variety of ensembles with $m_{\pi} \simeq m_{\pi}^{p h y s}$ is in progress to reach the continuum limit. To extend the study to B -meson decays we will take advantage of new RBC/UKQCD ensembles at $a^{-1} \approx(3.5,4.5) \mathrm{GeV}$

	48 I	64 I	96 I
$L^{3} \cdot T / a^{4}$	$48^{3} \cdot 96$	$64^{3} \cdot 128$	$96^{3} \cdot 192$
β	2.13	2.25	2.31
$a m_{l}$	0.00078	0.000678	0.0054
$a m_{h}$	0.0362	0.02661	0.02132
α	2.0	2.0	2.0
$a^{-1}(\mathrm{GeV})$	$1.730(4)$	$2.359(7)$	≈ 2.8
$a(\mathrm{fm})$	$0.1141(3)$	$0.0837(3)$	≈ 0.071
$L(\mathrm{fm})$	$5.476(12)$	$5.354(16)$	≈ 6.8
L_{s} / a	24	12	12
$m_{\pi}(\mathrm{MeV})$	$139.2(4)$	$139.2(5)$	≈ 135
$m_{\pi} L$	$3.863(6)$	$3.778(8)$	≈ 4.7
N_{conf}	120	160	20

Supplementary
 slides

Electromagnetic and isospin-breaking effects

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and $\mathrm{SU}(2)$-breaking corrections,
$\left.\frac{\Gamma\left(K^{+} \rightarrow \ell^{+} v_{\ell}(\gamma)\right)}{\Gamma\left(\pi^{+} \rightarrow \ell^{+} v_{\ell}(\gamma)\right)}=\left(\frac{\left|V_{u s}\right|}{\left|V_{u d}\right|} \frac{f_{K}}{f_{\pi}}\right)^{2} \frac{M_{K^{+}}\left(1-m_{\ell}^{2} / M_{K^{+}}^{2}\right)^{2}}{M_{\pi^{+}}\left(1-m_{\ell}^{2} / M_{\pi^{+}}^{2}\right)^{2}}\left(1+\delta_{E M}+\delta_{S U(2)}\right)\right) \mathrm{K} / \pi$

For $\Gamma_{\mathrm{K} 12} / \Gamma_{\mathrm{\pi l2}}$
At leading order in ChPT both δ_{EM} and $\delta_{\mathrm{SU}(2)}$ can be expressed in terms of physical quantities (e.m. pion mass splitting, $f_{K} / f_{\Pi}, \ldots$)

- $\delta_{E M}=-0.0069(17) 25 \%$ of error due to higher orders $\Rightarrow 0.2 \%$ on $\Gamma_{\mathrm{K} 12} / \Gamma_{\pi \mid 2}$ M.Knecht et al., 2000; V.Cirigliano and H.Neufeld, 201 I
- $\delta_{S U(2)}=\left(\frac{f_{K^{+}} / f_{\pi^{+}}}{f_{K} / f_{\pi}}\right)^{2}-1=-0.0044(12)$
25% of error due to higher orders
$\Rightarrow 0.1 \%$ on $\Gamma_{\mathrm{Kl} 1} / \Gamma_{\mathrm{Tl} 12}$
J.Gasser and H.Leutwyler, I985; V.Cirigliano and H.Neufeld, 201 I

ChPT is not applicable to D and B decays

Real photon emission amplitude

By setting $p_{\gamma}^{2}=0$, at fixed meson mass, the form factors depend on $p_{H} \cdot p_{\gamma}$ only. Moreover, by choosing a physical basis for the polarization vectors, i.e. $\epsilon_{r}\left(\mathbf{p}_{\gamma}\right) \cdot p_{\gamma}=0$, one has

$$
\left.\epsilon_{\mu}^{r}\left(\mathbf{p}_{\gamma}\right) T^{\mu \nu}\left(p_{\gamma}, p_{H}\right)=\epsilon_{\mu}^{r}\left(\mathbf{p}_{\gamma}\right)\left\{\varepsilon^{\mu \nu \tau \rho}\left(p_{\gamma}\right)_{\tau}\right)_{F_{V}}+i\left[-g^{\mu \nu}\left(p_{\gamma} \cdot v\right)+v^{\mu} p_{\gamma}^{\nu}\right] F_{A}-i \frac{v^{\mu} v^{\nu}}{p_{\gamma} \cdot v} m_{H} f_{H}\right\}
$$

In the case of off-shell photons $\left(p_{\gamma}^{2} \neq 0\right) \longrightarrow \Gamma\left[H \rightarrow \ell \nu_{\ell} \ell^{+} \ell^{-}\right]$expressed in terms of 4 form factors

For large photon energies and in the B-meson rest frame the form factors can be written as

$$
\begin{aligned}
& F_{V}\left(E_{\gamma}\right)=\frac{e_{u} M_{B} f_{B}}{2 E_{\sqrt{ }\left(\lambda_{B}(\mu)\right.} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)+\Delta \xi\left(E_{\gamma}\right)} \\
& F_{A}\left(E_{\gamma}\right)=\frac{e_{u} M_{B} f_{B}}{2 E_{\sqrt{ }\left(\lambda_{B}(\mu)\right.} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)-\Delta \xi\left(E_{\gamma}\right)}
\end{aligned}
$$

M. Beneke and J. Rohrwild, 2011

Structure dependent contributions to decays of D and B mesons

- For the studies of D and B mesons decays we cannot apply ChPT
- For B mesons in particular we have another small scale, $m_{B^{*}}-m_{B} \simeq 45 \mathrm{MeV}$ \square the radiation of a soft photon may still induce sizeable SD effects
- A phenomenological analysis based on a simple pole model for F_{V} and F_{A} confirms this picture D. Becirevic et al., PLB 681 (2009) 257

$F_{V} \simeq \frac{\tilde{C}_{V}}{1-\left(p_{B}-k\right)^{2} / m^{2}} \quad$ Under this assumption the SD contributions to $B \rightarrow e V(\gamma)$ for $\mathrm{E}_{\gamma} \simeq 20 \mathrm{MeV}$ can be very large, but are small for
$F_{A} \simeq \frac{\tilde{C}_{A}}{1-\left(p_{B}-k\right)^{2} / m_{B_{1}}^{2}}$ $B \rightarrow \mu \nu(\gamma)$ and $B \rightarrow \tau v(\gamma)$
A lattice calculation of F_{V} and F_{A} would be very useful

$$
R_{1}^{A}(\Delta E)=\frac{\Gamma_{1}^{\mathrm{A}}(\Delta E)}{\Gamma_{0}^{\alpha, \mathrm{pt}}+\Gamma_{1}^{p \mathrm{t}}(\Delta E)}, \quad \mathrm{A}=\{\mathrm{SD}, \mathrm{INT}\}
$$

SD = structure dependent INT = interference

R

- Interference contributions are negligible in all the decays
- Structure-dependent contributions can be sizable for $K \rightarrow e v(\gamma)$ but they are negligible for $\Delta E<20 \mathrm{MeV}$ (which is experimentally accessible)

$$
\begin{aligned}
& \frac{4 \pi}{\alpha \Gamma_{0}^{\text {tree }}} \frac{d \Gamma_{1}^{\mathrm{SD}}}{d x_{\gamma}}=\frac{m_{P}^{2}}{6 f_{P}^{2} r_{\ell}^{2}\left(1-r_{\ell}^{2}\right)^{2}}\left[F_{V}\left(x_{\gamma}\right)^{2}+F_{A}\left(x_{\gamma}\right)^{2}\right] f^{\mathrm{SD}}\left(x_{\gamma}\right) \\
& \frac{4 \pi}{\alpha \Gamma_{0}^{\text {tree }}} \frac{d \Gamma_{1}^{\mathrm{INT}}}{d x_{\gamma}}=-\frac{2 m_{P}}{f_{P}\left(1-r_{\ell}^{2}\right)^{2}}\left[F_{V}\left(x_{\gamma}\right) f_{V}^{\mathrm{INT}}\left(x_{\gamma}\right)+F_{A}\left(x_{\gamma}\right) f_{A}^{\mathrm{INT}}\left(x_{\gamma}\right)\right]
\end{aligned}
$$

$\mathrm{dR}_{1}^{\mathrm{SD}}\left(\pi \rightarrow \mu v_{\mu} \gamma\right) / \mathrm{dx} \mathrm{x}_{\gamma}$

$\mathrm{dR}_{1}^{\mathrm{SD}}\left(\mathrm{K} \rightarrow \mu v_{\mu} \gamma\right) / \mathrm{dx} \mathrm{x}_{\gamma}$

$$
\text { - ChPT O }\left(e^{2} p^{4}\right) \text { - lattice }
$$

$$
\mathrm{dR}_{1}^{\mathrm{NT}}\left(\pi \rightarrow \mu v_{\mu} \gamma\right) / \mathrm{dx} x_{\gamma}
$$

3pt function in Euclidean space: time integrals

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{<}\left(t_{B}, T\right)= & \int_{-T}^{0} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & \left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}} \frac{1}{E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}} \\
& \times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle\left\langle n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right| J_{\mu}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{-\left(E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}\right)
\end{aligned}
$$

The unwanted exponential $e^{-\left(E_{\gamma}+E_{n,\left(\boldsymbol{p}_{B}-\mathbf{p}_{\gamma}\right)}-E_{B}\right) T}$ goes to zero for large T if $E_{\gamma}+E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}>E_{B}$.
Because the states $\left|n\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)\right\rangle$ have the same quark-flavor quantum numbers as the B meson, we have $E_{n,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)} \geq E_{B,\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)}=\sqrt{m_{B}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}$.
The inequality becomes $\sqrt{\mathbf{p}_{\gamma}^{2}}+\sqrt{m_{B}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}>\sqrt{m_{B}^{2}+\mathbf{p}_{B}^{2}}$.
This is in fact always satisfied (as long as $\mathbf{p}_{\gamma} \neq 0$).

3pt function in Euclidean space: time integrals [2]

For large negative t_{B},

$$
\begin{aligned}
I_{\mu \nu}^{>}\left(t_{B}, T\right)= & \int_{0}^{T} d t e^{E_{\gamma} t} C_{\mu \nu}\left(t, t_{B}\right) \\
= & -\left\langle B\left(\mathbf{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B}} e^{E_{B} t_{B}} \\
& \times \sum_{n} \frac{1}{2 E_{m, \mathbf{p}_{\gamma}}} \frac{1}{E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}} \\
& \times\langle 0| J_{\mu}(0)\left|m\left(\mathbf{p}_{\gamma}\right)\right\rangle\left\langle m\left(\mathbf{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|B\left(\mathbf{p}_{B}\right)\right\rangle \\
& \times\left(1-e^{\left(E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}\right) T}\right)
\end{aligned}
$$

The unwanted exponential $e^{\left(E_{\gamma}-E_{m, \mathbf{p}_{\gamma}}\right) T}$ goes to zero for large T if $E_{m, \mathbf{p}_{\gamma}}>E_{\gamma}$.
Because the states $\left|m\left(\mathbf{p}_{\gamma}\right)\right\rangle$ have a nonzero mass, this is always satisfied.

Cross-checks

Recall

$$
\begin{aligned}
T_{\mu \nu}= & \epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{D_{s}} f_{D_{s}} \\
& +\left(p_{\gamma}\right)_{\mu} \text {-terms }
\end{aligned}
$$

\longrightarrow also extract $f_{D_{s}}$ as a cross-check

Yellow line $=$ FLAG 2021 average

Cancellation between quark components

Fit form: 4d method

Use fit ranges where data has plateaued in t_{H}, i.e. $t_{H} \rightarrow-\infty$
Include terms to fit
(1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu \nu}\left(T, t_{H}\right)=I_{\mu \nu}^{<}\left(T, t_{H}\right)+I_{\mu \nu}^{>}\left(T, t_{H}\right)$

$$
\begin{aligned}
F\left(t_{H}, T\right)=F+B_{F}^{<} & \underbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}_{t_{e m}<0}+B_{F}^{>} \underbrace{e^{\left(E_{\gamma}-E^{>}\right) T}}_{t_{e m}>0} \\
& \text { fit parameters }
\end{aligned}
$$

Only have three values of T, fitting multiple exponentials not possible \rightarrow Use broad Gaussian prior on $E^{>}$

$K \rightarrow \ell \nu_{\ell} \gamma: 4 d$ method

Sum of both time orderings $t_{e m}<0+t_{e m}>0$:

$$
F_{A}\left(t_{H}, T\right)=F_{A}+B_{F_{A}}^{<} e^{-\left(E_{\gamma}-E_{K}+E_{A}^{<}\right) T}+B_{F_{A}}^{>} e^{\left(E_{\gamma}-E_{A}^{>}\right) T}
$$

Source sink separation t_{K} / a

$K \rightarrow \ell \nu_{\ell} \gamma: 3 \mathrm{~d}$ vs 4 d analysis results

4d method cannot resolve the sum of the unwanted exponentials of the separate time orderings

