Neutrino Oscillation and Lattice QCD

Aaron S. Meyer (asmeyer.physics@gmail.com)

UC Berkeley/LBNL

August 10, 2022

39th International Symposium on Lattice Field Theory

Outline

- Introduction
- ▶ Quasielastic Scattering from Experiment
 - Deuterium Constraints
- ▶ $F_A(Q^2)$ from LQCD
 - Excited States
 - Summary of $F_A(Q^2)$ Calculations
 - T2K/DUNE Implications
- ► Ongoing Work
 - Axial Form Factor Updates
 - Future Prospects

Note: all references in online slides are hyperlinked

Neutrino Oscillation

Neutrino Physics Goals

Flagship long baseline experiments to measure neutrino oscillation

DUNE: USA, HyperK: Japan

O(10 - 100 kton) mass

Seek to answer fundamental questions about neutrinos:

- mass ordering $(\Delta m_{32}^2 > 0?)$
- octant $(\sin^2 \theta_{23} = 0.5?)$
- CP violation ($\delta_{CP} = ?$)

- PMNS unitarity?
- 3 ν flavors?
- precision constraints

Also measure solar and supernova neutrinos

Data collection starts 2028-2029 \implies need support from theory!

Neutrino Oscillation

flavor eigenstates – interaction

Not the same

Oscillation probability is function of L/E_{ν} at fixed L

Measuring Oscillations

Neutrinos from tertiary beam $(p \to \pi^+ \to \nu_{\mu})$: broad flux Incoming E_{ν} not known, must determine from measurement

Neutrino Event Topologies

Nuclear environment complicates measurements:

- Many allowed kinematic channels
- Reinteractions within nucleus
- Only final state particles are observable

For any event, range of possible E_{ν} depending upon event topology

- \implies Event-by-event E_{ν} measurements are not possible
- "Reconstruct" event distributions using Monte Carlo simulations

Neutrino Cross Sections

Note: axial radius r_A^2 is useful for comparison, but incomplete picture

QE Experimental Constraints

Quasielastic Form Factors

Quasielastic (QE) scattering assumes quasi-free nucleon inside nucleus

$$\nu_{\mu} \qquad \qquad \mu^{-} \qquad \mathcal{M}_{\text{nucleon}} = \langle \ell | \mathcal{J}^{\mu} | \nu_{\ell} \rangle \langle N' | \mathcal{J}_{\mu} | N \rangle$$

$$\langle N'(p') | (V - A)_{\mu}(q) | N(p) \rangle$$

$$= \bar{u}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \frac{i}{2M_{N}} \sigma_{\mu\nu} q^{\nu} F_{2}(q^{2}) + \gamma_{\mu} \gamma_{5} F_{A}(q^{2}) + \frac{1}{2M_{N}} q_{\mu} \gamma_{5} F_{P}(q^{2}) \right] u(p)$$

- F_1, F_2 : constrained by eN scattering
- ▶ F_P : subleading in cross section, $\propto F_A$ from partially conserved axial current (PCAC) constraint

Axial form factor F_A is leading contribution to nucleon cross section uncertainty

Form Factor Parameterizations

Most common in experimental literature: dipole ansatz —

$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by both experimental and LQCD data (revisit later)
- ▶ Inconsistent with QCD, requirements from unitarity bounds
- ▶ Motivated by $Q^2 \to \infty$ limit, data restricted to low Q^2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- Rapidly converging expansion
- Controlled procedure for introducing new parameters

Deuterium Constraints on F_A

- Outdated bubble chamber experiments:
 - Total $O(10^3) \nu_{\mu} QE$ events
 - Original data lost
 - Unknown corrections to data
 - Deficient deuterium correction
- Dipole overconstrained by data underestimated uncertainty ×O(10)
- Prediction discrepancies could be from nucleon and/or nuclear origins

Coming soon:

MINER $\nu A \ \bar{\nu}_{\mu} p \rightarrow \mu^{+} n$ dataset Obtained from hydrocarbon target See [Cai thesis (2021)]

Lattice QCD

Digression - Excited States

Previous concerns about low g_A axial vector coupling

Axial vector coupling/form factor systematics have been extensively studied Excited states identified as a major cause for concern

Gold standard: $N\pi$ multiparticle interpolating operators Last major hurdle to solidify confidence in results

- \implies numerically costly, first studies being done now
- \implies will demonstrate robustness (or flaws) of previous results

Other studies performed with only 3-quark operators in the meantime — too much to cover in this talk!

Excited States - PCAC Checks

Nontrivial checks from PCAC:

$$\begin{split} \langle N | \mathcal{A}_{\mu} | N \rangle &= \bar{u} \Big[\gamma_{\mu} \gamma_5 F_A(q^2) + \frac{q_{\mu}}{2M_N} \gamma_5 F_P(q^2) \Big] u \\ \langle N | \mathcal{P} | N \rangle &= \bar{u} \Big[\gamma_5 F_5(q^2) \Big] u \\ \text{PCAC operator relation:} \quad q^{\mu} \mathcal{A}_{\mu} = 2 \hat{m} \mathcal{P} \\ \implies 2M_N F_A(Q^2) - \frac{Q^2}{2M_N} F_P(Q^2) = 2 \hat{m} F_5(Q^2) \end{split}$$

Previously: Checks succeed for correlators, fail for form factors Solution: better excited state quantification

 \implies extracted something other than $\langle N|\mathcal{A}_{\mu}|N\rangle$, like $\langle N\pi|\mathcal{A}_{\mu}|N\rangle$

Two general strategies have been used to deal with excited states:

large t_{sep} :	ground state saturation; signal-to-noise degradation e.g. summation method [Phys Rev D 86 (2012)]
many t_{sep} :	isolate, remove excited states; many fit parameters [Phys.Rev.C 105 (2022)]

Can we do better?

Excited States - $\chi {\rm PT}$ and $N\pi$

Contamination primarily from enhanced $N\pi$, mostly from induced pseudoscalar

Caution: 2-point functions not sensitive to $N\pi$ \implies need simultaneous 2- and 3-point function fits [Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Prediction from χ PT: [Phys.Rev.D 99 (2019)]

First demonstration by NME: [Phys.Rev.Lett. 124 (2020)]

 χ PT-inspired fit methods for fitting form factor data [Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]

Alternate fit strategies to remove $N\pi$ (are they comparable?):

- Kinematic constraints $(F_P = 0)$
- explicit $N\pi$ operators
- include \mathcal{A}_4 (strong $N\pi$ coupling)

Now available online!

Nucleon Axial Form Factor

Lots of activity! (Thank you for private communications!)

- Excellent agreement among collaborations
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \rightarrow 0$)
- Collective disagreement with deuterium \implies deuterium corrections?

Remaining: quantify excited state contamination

effects on ground state using $N\pi$ interpolating operators

Axial Radius (r_A^2)

Radius related to slope: $r_A^2 = -\frac{6}{g_A} \frac{dF_A}{dQ^2} \Big|_{Q^2=0}$

Good agreement with radius from experiment, poor agreement with large Q^2 Fixing radius to agree with large Q^2 would bring radius down to $r_A^2 \sim 0.25 \text{ fm}^2$

 \implies Incompatible with dipole ansatz: would have to be neither or both

Free Nucleon Cross Section

- Representative LQCD dataset (CalLat 21)
- Integral over $Q^2 \implies$ enhancement of discrepancy
- ▶ LQCD prefers 30-40% enchancement of ν_{μ} CCQE cross section
- recent Monte Carlo tunes require 20% enhancement of QE [2206.11050 [hep-ph]] [Phys.Rev.D 105 (2022)]

T2K Implications

• Dashed dark blue (GENIE nominal) vs solid magenta ($z \exp LQCD$ fit)

- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction

DUNE Implications

Solid dark blue (GENIE nominal) vs dashed magenta ($z \exp LQCD$ fit)

- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- Monte Carlo tuning makes more detailed comparisons complicated
 All channels are adjusted to compensate for QE changes
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction

Future Directions

Future Directions

Nucleon Form Factor Updates 1/3

CalLat

- MDWF on HISQ
- Fits to single physical mass ensemble
- Global fit across several Q²
- Many $t_{sep} \implies$ more ability to disentangle excited states
- [PoS LATTICE2021 (2022)]

ETM

- Twisted mass clover
- 3 physical mass ensembles
- Continuum extrapolation + PCAC checks
- [Ferenc Pittler Fri 2:30pm]

Fermilab Lattice+MILC

- HISQ on HISQ
- Unphysical pion mass at $Q^2 \neq 0$
- ▶ Plateau ratios $\vec{Q} \perp \vec{A}$
- ▶ [Yin Lin Lattice 2021]

Nucleon Form Factor Updates 2/3

LHP+RBC+UKQCD

- Domain wall fermion
- 1 physical mass ensemble
- axial + electromagnetic form factors
- Tested several form factor parameterizations
- [Shigemi Ohta Tues 3:00pm]

Mainz

- Recent publication [2207.03440 [hep-lat]]
- O(a) improved Wilson
- 14 ensembles
- full error budget
- Fit correlators directly to z exp
- [Jonna Koponen Tues 3:40pm]

Nucleon Form Factor Updates 3/3

PACS

- O(a) improved Wilson
- 2 physical mass ensembles at 10 fm
- axial + electromagnetic form factors
- [Ryutaro Tsuji Tues 5:10pm]

NME

- ▶ $7 \rightarrow 13$ ensemble update
- full error budget
- PCAC checks
- extensive excited state studies
- multiple parameterizations tested
- [Rajan Gupta Fri 3:50pm]

RQCD - Multiparticle Interpolating Operators

Address primary source of excited state contamination: $N\pi$

 2×2 operator basis, explicit 3- and 5-quark interpolating operators

Significantly flatter ratios, simplified analysis

Will analysis with only 3-quark operators be consistent?

[Lorenzo Barca – Fri 4:40pm]	RQCD $N\pi$ Operators
[Ferenc Pittler – Fri 2:30pm]	ETM $N\pi$ Operators
[André Walker-Loud – Tues 3:20pm]	$N\pi$ spectroscopy/scattering

Resonance Production - $N \to \Delta$

 $N \rightarrow \Delta$ transition form factors are poorly known, but needed 1 π production cross section known to 30% [Phys.Rev.C 88 (2013)] DUNE error budget anticipates $\leq 10\%$ precision [2002.03005 [hep-ex]]

Completely unconstrained axial form factors in other $J^P = 3/2^-$ channels $\implies 100\%$ uncertainties from V - A, A - A interference terms [Phys.Rev.D 74 (2006)]

Previous work by ETM: [Phys.Rev.D 83 (2011)] [Phys.Rev.Lett. 98 (2007)] Formal developments:

 $\begin{array}{ll} 1+\mathcal{J}\rightarrow 2 & (N\gamma^*\rightarrow N\pi) & [\text{Phys.Rev.D 103 (2021)}] \\ 1+\mathcal{J}\rightarrow 2+\mathcal{J} & (N\gamma^*\rightarrow \Delta\rightarrow N\pi\gamma^*) & [\text{Phys.Rev.D 105 (2022)}] \end{array}$

Aaron S. Meyer

Resonance Production - $N \to N^*$

See also: [Phys.Rev.D 101 (2020)]

Four point function with $\langle \mathcal{O}(0)\mathcal{J}_4(-q)\mathcal{J}_4(q)\bar{\mathcal{O}}(0)\rangle$, $M_{\pi} \sim 370$ MeV Removed elastic contribution \implies resonant response (strong overlap with Roper)

Hadronic tensor methods for addressing SIS (1.4 GeV $\leq W \leq$ 2.0 GeV) Large $N\pi$, $N\pi\pi$ contributions; strong interferences between resonant/nonresonant Currently no practical $Q^2 \neq 0$ data in this region [S.Nakamura - NuSTEC S&DIS]

Aaron S. Meyer

Outlook

- ▶ Nucleon form factor uncertainty significantly underestimated
- Dipole parameterization should be abandoned
- \blacktriangleright Mounting evidence that enhancement of ν QE cross section needed
- ▶ $N\pi$ states are a major player in LQCD calculations
- ▶ LQCD is a proxy for missing experimental data
- ▶ Unfilled niche: need support for neutrino experimental program
 - resonant transition form factors shallow inelastic scattering

 \implies now is the time to start!

If I have failed to mention your relevant work, please let me know!

Thank you for your attention!

Aaron S. Meyer

Backup

PCAC Checks

Excited States in Temporal Axial Current

Plotted: ratio combination ~ $\langle N | \mathcal{A}_{\mu} | N \rangle$

Highly enhanced excited states in \mathcal{A}_4 , use as handle to quantify $N\pi$

Vector Form Factors - Proton/Neutron

Large tension in proton magnetic form factor

Vector Form Factors - Isospin Symmetric

Uncertain slope of F_2^V

Large uncertainty on isoscalar form factors

z Expansion in $\chi \mathrm{PT}$

[Ann.Rev.Nucl.Part. 72 (2022)]

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

With nonzero t_0 , chiral expansion is about $Q^2 = -t_0$ rather than $Q^2 = 0$:

$$x \equiv \frac{Q^2 + t_0}{t_c - t_0} = 4 \sum_{k=1}^{\infty} k z^k \sim O(z)$$

$$(1+x)^{1/2} - 1 = \frac{x}{2} - 4\sum_{k=2}^{\infty} \frac{(2k-3)!}{k!(k-2)!} \left(-\frac{x}{4}\right)^k$$
$$z = \frac{1}{x} \left((1+x)^{1/2} - 1\right)^2 \sim O(x)$$
$$Q^{2m} = \left((Q^2 + t_0) - t_0\right)^m = (t_c - t_0)^m \sum_{n=0}^m \binom{m}{n} x^n \left(\frac{-t_0}{t_c - t_0}\right)^{m-n}$$

Electro Pion Production

Modern experiments do not report $F_A(Q^2) \implies$ averages out of date Possible argument for comparing to r_A^2 from low Q^2 ; high Q^2 untrustworthy Effort needed to update prediction from photo/electro pion production